The on each packet of a message can identify where the email originated from and who sent it

<< Back to Technical Glossary

Packet Switching Definition

Packet Switching transmits data across digital networks by breaking it down into blocks or packets for more efficient transfer using various network devices. Each time one device sends a file to another, it breaks the file down into packets so that it can determine the most efficient route for sending the data across the network at that time. The network devices can then route the packets to the destination where the receiving device reassembles them for use.

FAQs

What is Packet Switching?

Packet switching is the transfer of small pieces of data across various networks. These data chunks or “packets” allow for faster, more efficient data transfer.

Often, when a user sends a file across a network, it gets transferred in smaller data packets, not in one piece. For example, a 3MB file will be divided into packets, each with a packet header that includes the origin IP address, the destination IP address, the number of packets in the entire data file, and the sequence number.

Types of Packet Switching

There are two major types of packet switching:

Connectionless Packet Switching. This classic type of packet switching includes multiple packets, each individually routed. This means each packet contains complete routing information—but it also means different paths of transmission and out-of-order delivery are possible, depending on the fluctuating loads on the network’s nodes (adapters, switches and routers) at the moment. This kind of packet switching is sometimes called datagram switching.

Each packet in connectionless packet switching includes the following information in its header section:

  • Source address
  • Destination address
  • Total number of packets
  • Sequence number (Seq#) for reassembly

Once the packets reach their destination via various routes, the receiving devices rearrange them to form the original message.

Connection-Oriented Packet Switching. In connection-oriented packet switching, also called virtual circuit switching or circuit switching, data packets are first assembled and then numbered. They then travel across a predefined route, sequentially. Address information is not needed in circuit switching, because all packets are sent in sequence.

What is Packet Loss?

Occasionally, packets might bounce from router to router many times before reaching their destination IP address. Enough of these kinds of “lost” data packets in the network can congest it, leading to poor performance. Data packets that bounce around in the network too many times may get lost.

The hop count addresses this problem, setting a maximum number of bounce times per packet. “Bouncing” simply refers to the inability to locate the final destination IP address, and the resulting transfer from one router to another instead. If a certain packet reaches its maximum hop count, or maximum number of hops it is permitted before reaching its destination, the router it is bouncing from deletes it. This causes packet loss.

Circuit Switching vs Packet Switching

Packet switching and circuit switching are the primary models for facilitating enterprise network connections. Each mode has its place, depending on the facts and user needs.

Circuit switching is most often used for voice and video calling systems—communications systems that require that users establish a dedicated circuit or channel before they can connect. A circuit switching channel is always reserved, and is in use only when the users are communicating.

Circuit switching connections might allocate one or two channels for communications. Those with one channel are called half duplex. Those with two channels are full duplex.

Circuit switching is different from packet switching because it creates a physical path between the destination and source. There is no physical path in packet switching, which instead sends packets over a variety of routes.

Advantages of Packet Switching over Circuit Switching

Advantages of Packet Switching over Circuit Switching:

Efficiency. Improved efficiency means less network bandwidth wastage. No need to reserve the circuit even when it’s not in use means the system is more efficient. A constantly reserved circuit results in wasted network bandwidth, so network efficiency tends to increase with the use of packet switching.

Speed. Optimal transmission speed, minimal latency.

Improved fault tolerance. During partial outages or other network problem times, packets can be rerouted and follow different paths. Using a circuit switching network, a single outage can down the designated pathway for the communications.

Budget. Comparatively cost-effective and simple to implement. Packet switching typically also bills based only on duration of connectivity, whereas circuit switching bills on both duration of connection and distance.

Digital. Packet switching works well for data communication, transmitting digital data directly to its destination. Data transmissions are generally high quality in a packet switched network because such a network employs error detection and checks data distribution with the goal of error free transmissions.

Disadvantages of Packet Switching over Circuit Switching:

Reliability. The packet switching process is reliable in that the destination can identify any missing packets. However, circuit switched networks deliver packets in order along the same route and are therefore less likely to experience missing packets in the first place.

Complexity. Packet switching protocols are complex, so switching nodes demand more processing power and a large amount of RAM.

File size. Packet switching is more useful for small messages, while circuit switching is best for larger transmissions. This is due to multiple rerouting delays, the risk of multiple lost packets, and other issues.

Cell Switching vs Packet Switching

Cell switching, or cell relay, uses a circuit switching network and has features of circuit switching. The primary difference is that in packet switching technology, the packets are of variable lengths, but in cell switching, packets are a fixed length of 53 bytes with a 5 byte header.

Advantages of cell switching include dynamic bandwidth, high performance, scalability, and the ability to use common LAN/WAN architecture multimedia support. Cell switching achieves high performance using hardware switches. There is no need to reserve resources in computer networks for a connection since the technology uses virtual rather than physical circuits. And after establishing a virtual circuit, you can achieve higher network throughputs thanks to minimized switching time.

What is a Packet Switched Network?

A packet switched network follows networking protocols that divide messages into packets before sending them. Packet-switching technologies are part of the basis for most modern Wide Area Network (WAN) protocols, including Frame Relay, X.25, and TCP/IP.

Compare this to standard telephone network landline service, which is based on circuit switching technology. Circuit switching networks are ideal for most real-time data, transmission, while packet switching networks are both effective and more efficient for data that can tolerate some transmission delays, such as site data and e-mail messages.

You can search for email messages in any or all mailboxes by using your own words—such as “emails from John sent yesterday”—or by using Mail suggestions and search filters. Top Hits is listed first in the results, and reflects messages you’ve read and replied to recently, your VIP senders and contacts, and other factors.

Tip: Your search applies to the current mailbox. To search in specific mailboxes, select them in the Mail sidebar or the Favorites bar before you start.

Open Mail for me

When you click in the search field, Smart search suggestions provide recommended searches and show related content.

  1. In the Mail app

    on your Mac, in the toolbar, enter a phrase in the search field (if it’s not shown, click the Search button
    in the toolbar).

    Type what you’re looking for the same way you’d say it (this is called natural language search). Here are some examples:

    • from nisha

    • from nisha yesterday

    • to kevin

    • to kevin about remodel

    • flagged emails

    • PDF attachments

      As you type, Smart search corrections improve your results by correcting typos and replacing words with useful synonyms.

  2. Press Return.

    Mail shows the mailboxes being searched in the toolbar above the message list. If there are no results, select one or more different mailboxes in the Mail sidebar or the Favorites bar.

  3. When you’re done, click the Clear button

    in the search field.

  1. In the Mail app

    on your Mac, in the toolbar, start typing a phrase in the search field (if it’s not shown, click the Search button
    in the toolbar), then choose a Mail suggestion.

    Mail creates a search filter in the search field and lists the matching messages it found.

    If there are no results in the current mailbox, click “Search all mailboxes” below the search field.

  2. Refine the results in any of these ways:

    • Change search filters: If a search filter contains a down arrow, you can click it to change the filter. For example, you can change a search filter to search for messages to or from a certain person, or search subject lines or entire messages.

    • Use multiple search filters: Place the pointer after the first search filter, start typing search text, then choose a suggestion. Repeat as needed; the search field scrolls as you add more search filters.

      Mail looks for messages that match all of the search filters; the more you use, the more focused the search. If you don’t get expected results, remove some of the search filters.

    • Search message headers: Type the name of a message header field, followed by a colon and the value you’re searching for—for example, “from: julie talma” or “priority: high”—then choose a suggestion.

    • Search a timeframe or range of dates: Type “date” followed by a colon and a date range, such as “date: 9/05/21-10/05/21.”

    • Search by email attributes: Type “flag” to find all flagged emails, “unread” to find all unread emails, or “attachment” to find all emails with attachments.

    • Search using AND, OR, NOT (Boolean operators): Type your search text using the operators (in uppercase).

      For example, to search for messages that contain “yellowstone” and “cascades” but not “teton,” type “yellowstone AND cascades NOT teton” or “cascade AND yellowstone -teton.”

    • Search different mailboxes: Select one or more mailboxes in the Mail sidebar or the Favorites bar.

  3. When you’re done, click the Clear button

    in the search field.

If you think you might search for a particular set of messages again, you can save your search as a Smart Mailbox.

  1. In the Mail app

    on your Mac, before you clear your search from the search field, click the Add button
    in the toolbar above the message list.

    Make sure a specific mailbox is selected in the Mail sidebar.

  2. Change the name of the Smart Mailbox and conditions, if you want.

  3. Click OK.

When you receive new messages that match the Smart Mailbox conditions, the messages are automatically shown when you view the Smart Mailbox. See Use Smart Mailboxes.

When Mail searches all mailboxes, it searches in the Trash mailbox, but not the Junk mailbox; it doesn’t search encrypted messages, either. To change these options, choose Mail > Settings, click General, then set the options at the bottom of the pane.

Top Hits aren’t shown when you use column layout to view messages.

When you search your Mac using Spotlight, emails are included in the results. You can exclude them by changing Spotlight settings.

Toplist

Latest post

TAGs