What are the cellular structures that convert the energy in food into a form the body can use quizlet?

The body breaks down most carbohydrates from the foods we eat and converts them to a type of sugar called glucose. Glucose is the main source of fuel for our cells. When the body doesn't need to use the glucose for energy, it stores it in the liver and muscles. This stored form of glucose is made up of many connected glucose molecules and is called glycogen. When the body needs a quick boost of energy or when the body isn't getting glucose from food, glycogen is broken down to release glucose into the bloodstream to be used as fuel for the cells.

The response to food begins even before food enters the mouth. The first phase of ingestion, called the cephalic phas, is controlled by the neural response to the stimulus provided by food. All aspects—such as sight, sense, and smell—trigger the neural responses resulting in salivation and secretion of gastric juices. The gastric and salivary secretion in the cephalic phase can also take place due to the thought of food. Right now, if you think about a piece of chocolate or a crispy potato chip, the increase in salivation is a cephalic phase response to the thought. The central nervous system prepares the stomach to receive food.

The gastric phase begins once the food arrives in the stomach. It builds on the stimulation provided during the cephalic phase. Gastric acids and enzymes process the ingested materials. The gastric phase is stimulated by (1) distension of the stomach, (2) a decrease in the pH of the gastric contents, and (3) the presence of undigested material. This phase consists of local, hormonal, and neural responses. These responses stimulate secretions and powerful contractions.

The intestinal phase begins when chyme enters the small intestine triggering digestive secretions. This phase controls the rate of gastric emptying. In addition to gastrin emptying, when chyme enters the small intestine, it triggers other hormonal and neural events that coordinate the activities of the intestinal tract, pancreas, liver, and gallbladder.

Mitochondria are membrane-bound cell organelles (mitochondrion, singular) that generate most of the chemical energy needed to power the cell's biochemical reactions. Chemical energy produced by the mitochondria is stored in a small molecule called adenosine triphosphate (ATP). Mitochondria contain their own small chromosomes. Generally, mitochondria, and therefore mitochondrial DNA, are inherited only from the mother.

Mitochondria are membrane-bound organelles, but they're membrane-bound with two different membranes. And that's quite unusual for an intercellular organelle. Those membranes function in the purpose of mitochondria, which is essentially to produce energy. That energy is produced by having chemicals within the cell go through pathways, in other words, be converted. And the process of that conversion produces energy in the form of ATP, because the phosphate is a high-energy bond and provides energy for other reactions within the cell. So the mitochondria's purpose is to produce that energy. Some different cells have different amounts of mitochondria because they need more energy. So for example, the muscle has a lot of mitochondria, the liver does too, the kidney as well, and to a certain extent, the brain, which lives off of the energy those mitochondria produce. So if you have a defect in the pathways that the mitochondria usually functions with, you're going to have symptoms in the muscle, in the brain, sometimes in the kidneys as well; many different types of symptoms. And we probably don't know all of the different diseases that mitochondrial dysfunction causes.

Toplist

Latest post

TAGs