What will be the ratio of the distances moved by a freely falling body from rest in 4th and 5th seconds of journey a 4 5?

  • Correct Answer: B

    Solution :

    \[{{S}_{n}}th=u+\frac{a}{2}\left( 2n-1 \right)\] \[\text{So, }\frac{{{S}_{4}}}{{{S}_{5}}}=\frac{0+\frac{g}{2}\left( 7 \right)}{0+\frac{g}{2}\left( 9 \right)}=\frac{7}{9}\]

warning Report Error

Page 2

  • Correct Answer: A

    Solution :

    \[s=ut+\frac{1}{2}a{{t}^{2}}\] \[-65=12t-5{{t}^{2}}\]on solving we get, t=5s

warning Report Error

Page 3

  • Correct Answer: D

    Solution :

    For A to B \[S=\frac{1}{2}g{{t}^{2}}\text{         }....\text{(i)}\] For A to C \[\text{S=}\frac{1}{2}gt{{'}^{2}}\text{        }....\text{(ii)}\] Dividing (i) by (ii) we get \[\frac{t}{t'}=\frac{1}{\sqrt{2}}\]

warning Report Error

Page 4

  • Correct Answer: A

    Solution :

    Clearly distance moved by 1st ball in 18s = distance moved by 2nd ball in 12s. Now, distance moved in 18 s by 1st ball \[=\frac{1}{2}\times 10\times {{18}^{2}}=90\times 18=1620\text{ m }\] Distance moved in 12 s by 2nd ball \[=ut+\frac{1}{2}g{{t}^{2}}\text{      }\therefore \text{1620=12v+5}\times \text{144}\] \[\Rightarrow \text{v=135-60=75 m}{{\text{s}}^{-1}}\]

warning Report Error

Page 5

  • Correct Answer: A

    Solution :

    \[\therefore h=\frac{1}{2}g{{t}^{2}}\text{  }\therefore {{\text{h}}_{1}}=\frac{1}{2}g{{\left( 5 \right)}^{2}}=125\] \[{{\text{h}}_{1}}+{{\text{h}}_{2}}=\frac{1}{2}g{{\left( 10 \right)}^{2}}=500\Rightarrow {{\text{h}}_{2}}=375\] \[\therefore {{\text{h}}_{1}}+{{\text{h}}_{2}}+{{h}_{3}}=\frac{1}{2}g{{\left( 15 \right)}^{2}}=1125\] \[\Rightarrow {{h}_{3}}625\] \[{{h}_{2}}=3{{h}_{1}},{{h}_{3}}=5{{h}_{1}}\text{ or }{{\text{h}}_{1}}=\frac{{{h}_{2}}}{3}=\frac{{{h}_{3}}}{5}\]

warning Report Error

Page 6

warning Report Error

Page 7

  • Correct Answer: C

    Solution :

    In \[\frac{\text{T}}{\text{3}}\] sec, the distance travelled =\[\frac{\text{1}}{\text{2}}\text{g}{{\left( \frac{\text{T}}{\text{3}} \right)}^{\text{2}}}\text{=}\frac{\text{h}}{\text{9}}\]  \[\therefore \]Position of the ball from the ground =\[h-\frac{h}{9}=\frac{8h}{9}\text{m}\]

warning Report Error

Page 8

  • Correct Answer: B

    Solution :

    Time taken by the stone to reach the water level \[{{t}_{1}}=\sqrt{\frac{2h}{g}}\] Time taken by sound to come to the mouth of the well, \[{{\text{t}}_{\text{2}}}\text{=}\frac{\text{h}}{\text{v}}\] \[\therefore \]Total time \[{{\text{t}}_{\text{1}}}\text{+}{{\text{t}}_{\text{2}}}\text{=}\sqrt{\frac{\text{2h}}{\text{g}}}\text{+}\frac{\text{h}}{\text{v}}\]

warning Report Error

Page 9

  • Correct Answer: C

    Solution :

    \[\text{h=ut}-\frac{\text{1}}{\text{2}}\text{a}{{\text{t}}^{\text{2}}}\] \[\Rightarrow g{{t}^{2}}-2ut+2h=0\] Solving for t we get \[{{t}_{1}}+{{t}_{2}}=2u/g\] \[{{t}_{1}}\times {{t}_{2}}=2\,h\text{/}g\] \[\text{so, }\Delta \text{t= }\!\!|\!\!\text{ }{{t}_{1}}-{{t}_{2}}\text{ }\!\!|\!\!\text{ =}{{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}-4{{t}_{1}}{{t}_{2}}\] Putting value we get \[\text{u=}\frac{1}{2}\sqrt{8hg+{{g}^{2}}\Delta {{t}^{2}}}\]

warning Report Error

Page 10

warning Report Error

Page 11

  • Correct Answer: D

    Solution :

    Let the two balls P and Q meet at height x m from the ground after time t s from the start. We have to find distance, \[BC=\left( 100-x \right)\]
    For ball P \[\text{S=x m, u=25 m}{{\text{s}}^{-1}},\text{a}=-\text{g}\] From \[S=ut+\frac{1}{2}a{{t}^{2}}\] \[x=25t-\frac{1}{2}a{{t}^{2}}\]                                 .......... (i) For ball Q \[\text{S= }\left( 100-\text{x} \right)\text{ m, u = 0, a =g}\] \[\therefore 100-x=0+\frac{1}{2}g{{t}^{2}}\]                .......... (ii) Adding eqn. (i) and (ii), we get \[\text{100=25t or t=4s}\] From eqn. (i), \[\text{x=25}\times 4-\frac{1}{2}\times 9.8\times {{\left( 4 \right)}^{2}}=21.6\text{ m }\] Hence distance from the top of the tower \[\text{= (100-x)m=(100-21}\text{.6m)=78}\text{.4m}\]

warning Report Error

Page 12

warning Report Error

Page 13

  • Correct Answer: B

    Solution :

    Let the body fall through the height of tower in t seconds. From, \[{{D}_{n}}=u+\frac{a}{2}\left( 2n-1 \right)\]we have, total distance travelled in last 2 second of fall is \[D={{D}_{t}}+{{D}_{\left( t-1 \right)}}\] \[=\left[ 0+\frac{g}{2}\left( 2t-1 \right) \right]+\left[ 0+\frac{g}{2}\left[ 2\left( t-1 \right) \right]-1 \right]\] \[=\frac{g}{2}\left( 2t-1 \right)+\frac{g}{2}\left( 2t-3 \right)=\frac{g}{2}\left( 4t-4 \right)\] \[=\frac{10}{2}\times 4\left( t-1 \right)\] \[\text{or, 40=20}\left( t-1 \right)\text{ or t=2+1=3s}\] Distance travelled at t second is \[\text{s=ut+}\frac{1}{2}a{{t}^{2}}=0+\frac{1}{2}\times 10\times {{3}^{2}}=45\text{ m}\]

warning Report Error

Page 14

  • Correct Answer: C

    Solution :

    Given, \[H=10m\], \[u=5m/s,\text{ }g=10m/{{s}^{2}}\] Speed on reaching ground \[v=\sqrt{{{u}^{2}}+2gh}\] Now, v = u + at Now, \[v=\sqrt{{{u}^{2}}+2gh}=-u+gt\] Time taken to reach highest point is \[t=\frac{u}{g}\], \[\Rightarrow t=\frac{u+\sqrt{{{u}^{2}}+2gH}}{g}=\frac{nu}{g}\text{(from question)}\] \[\Rightarrow 2gH=n\left( n-2 \right){{u}^{2}}\] \[\Rightarrow m\left( n-1 \right)=\frac{2gH}{{{u}^{2}}}=\frac{2\times 10+10}{5\times 5}=8\Rightarrow n=4\]

warning Report Error

Page 15

  • Correct Answer: A

    Solution :

    The distance travelled by the body A is A, given by \[{{v}_{1}}t=-\frac{g{{t}^{2}}}{2}\] and that travelled by the body B is \[{{\text{h}}_{2}}=\frac{g{{t}^{2}}}{2}\]s The distance between the bodies \[=x=h-({{h}_{1}}+{{h}_{2}}).\] Since\[{{\text{h}}_{\text{1}}}\text{+}{{\text{h}}_{\text{2}}}\text{=}{{\text{v}}_{\text{1}}}\text{t}\], the relation sought is \[x=h-{{v}_{1}}t\]

warning Report Error

Page 16

  • Correct Answer: C

    Solution :

    \[\frac{\text{ }\!\!~\!\!\text{ Time of ascent}}{\text{Time of descent}}=\frac{\left( \frac{u}{g+a} \right)}{\frac{u}{\sqrt{\left( g+a \right)\left( g-a \right)}}}\] \[=\frac{\sqrt{\left( g+a \right)\left( g-a \right)}}{g+a}=\sqrt{\frac{\left( g-a \right)}{g+a}}\] \[=\sqrt{\frac{10-5}{10+5}}=\sqrt{\frac{5}{15}}=\sqrt{\frac{1}{3}}\]

warning Report Error

Page 17

  • Correct Answer: D

    Solution :

             
    As the time taken from D to A = 2 sec. And D\[\to A\to B\to C=10\text{ sec}\left( given \right).\] As ball goes from \[B\to C\text{ }(\text{u=0, t=4sec})\] \[{{v}_{c}}=0+4g.\] As it moves from C to D, \[\text{s=ut+}\frac{1}{2}\text{a}{{\text{t}}^{2}}\] \[s=4g\times 2+\frac{1}{2}g\times 4=10g.\]

warning Report Error

Page 18

  • Correct Answer: A

    Solution :

    \[t=\frac{s}{v}=\sqrt{{{H}^{2}}+{{L}^{2}}}\div \sqrt{\frac{2H}{g}}\]

warning Report Error

Page 19

  • Correct Answer: B

    Solution :

    \[\text{v}_{\text{B}}^{\text{2}}\text{=v}_{\text{T}}^{\text{2}}\text{+2}\left( \text{10} \right)\left( \text{3} \right)\] \[\Rightarrow \text{v}_{\text{B}}^{\text{2}}\text{=v}_{\text{T}}^{\text{2}}\text{+60                        }....\text{(i)}\] \[\text{Also, }{{\text{v}}_{B}}={{\text{v}}_{T}}+\left( 10 \right)\left( 0.5 \right)\text{       }....\text{(ii)}\] Solve eqs. (i) and (ii) We get \[{{\text{v}}_{T}}-{{\text{v}}_{B}}=4.9\text{ m/s}\]

warning Report Error

Page 20

  • Correct Answer: B

    Solution :

    Ball A is thrown upwards from the building. During its downward journey when it comes back to the point of throw, its speed is equal to the speed of throw. So, for the journey of both the balls from point4to5.                     We can apply \[{{\text{v}}^{\text{2}}}-{{\text{u}}^{\text{2}}}\text{=2gh}\text{.}\] As u, g, h are same for both the balls, \[\,{{\text{v}}_{\text{A}}}\text{=}{{\text{v}}_{\text{B}}}\]

warning Report Error

Toplist

Latest post

TAGs