A microscope is set to 10x eyepiece and 100x objective. what is the total magnification

Microscopes magnify the tiniest inhabitants of this world. From the minute details of cells to the delicate cilia of paramecium to the intricate workings of Daphnia, microscopes reveal many miniscule secrets. Calculating total magnification uses simple observation and basic multiplication.

Basic Microscope Design

Microscopes use lenses to magnify objects. A simple microscope uses only one lens; a magnifying glass could be called a simple microscope. The magnification of a simple microscope doesn't need any calculation because the single lens is usually labeled. A hand-lens, for example, might be labeled with 10x, meaning the lens magnifies the object to look ten times larger than the actual size.

Compound microscopes use two or more lenses to magnify the specimen. The standard school microscope combines two lenses, the ocular and one objective lens, to magnify the object. The ocular or eyepiece is found at the top of the body tube. The objective lens points down toward the object to be magnified. Most microscopes have three or four objective lenses mounted on a rotating nosepiece. Rotating the nosepiece lets the viewer change the magnification. Different objective lenses provide different magnification options.

Finding Lens Magnification

Finding the magnification of each lens requires examining the casing of each lens. On the side of the casing is a series of numbers that includes a number followed by x, as 10x. This 10x shows that the lens magnifies an object to appear ten times larger than reality. Depending on the manufacturer, this magnification number may appear at the beginning or at the end of the number sequence. To calculate total magnification, find the magnification of both the eyepiece and the objective lenses. The common ocular magnifies ten times, marked as 10x. The standard objective lenses magnify 4x, 10x and 40x. If the microscope has a fourth objective lens, the magnification will most likely be 100x.

Calculating Magnification

Once the magnification of each individual lens is known, calculating total magnification is simple math. Multiply the magnification of the lenses together. For example, if the eyepiece magnification is 10x and the objective lens in use has a magnification of 4x, the total magnification is:

10\times 4 = 40

The total magnification of 40 means that the object appears forty times larger than the actual object. If the viewer changes to the 10x objective lens, the total magnification will be the ocular's 10x magnification multiplied by the new objective lens's 10x magnification, calculated as:

10\times 10 = 100

Note that calculating magnification in telescopes uses a different equation than calculating magnifiction in microscopes. For telescopes, one magnification calculation uses the focal lengths of the telescope and the eyepiece. That calculation is:

\text{magnification}=\frac{\text{focal length of telescope}}{\text{focal length of eyepiece}}

Like the microscope, these numbers usually can be found on the telescope.

Magnification:

  • Magnifying/Focusing
  • Figuring Total Magnification
Magnifying Objects/ Focusing Image:
  1. When viewing a slide through the microscope make sure that the stage is all the way down and the 4X scanning objective is locked into place.
  2. Place the slide that you want to view over the aperture and gently move the stage clips over top of the slide to hold it into place.
  3. Beginning with the 4X objective, looking through the eyepiece making sure to keep both eyes open (if you have trouble cover one eye with your hand) slowly move the stage upward using the coarse adjustment knobuntil the image becomes clear. This is the only time in the process that you will need to use the coarse adjustment knob. The microscopes that you will be using are parfocal, meaning that the image does not need to be radically focused when changing the magnification.
  4. To magnify the image to the next level rotate the nosepiece to the 10X objective. While looking through the eyepiece focus the image into view using only the fine adjustment knob, this should only take a slight turn of the fine adjustment knob to complete this task.
  5. To magnify the image to the next level rotate the nosepiece to the 40X objective. While looking through the eyepiece focus the image into view using only the fine adjustment knob, this should only take a slight turn of the fine adjustment knob to complete this task.
Total Magnification: To figure the total magnification of an image that you are viewing through the microscope is really quite simple. To get the total magnification take the power of the objective (4X, 10X, 40x) and multiply by the power of the eyepiece, usually 10X. (Click Here To See Image) (Click Here To See Image) (Click Here To See Image)

Return To Top of Page

What is the total magnification at 10X and 100X?

The total magnification is multiplication, so the total is ocular multiplied by objective. So here The ocular is 10 and the objective is 100. So it's 10 times 100 which is 1000. So the total magnification Is 1000 times.

What is the total magnification with a 10X ocular eyepiece and a 10X objective?

The total magnification is the product of the magnifications of two lens systems. Hence, the microscope which has a 10X objective lens and 10X ocular lens, it would magnify the object by 10 × 10 = 100 times. Was this answer helpful?

What is the total magnification of your microscope when you use the 10X objective?

Total Magnification: To figure the total magnification of an image that you are viewing through the microscope is really quite simple. To get the total magnification take the power of the objective (4X, 10X, 40x) and multiply by the power of the eyepiece, usually 10X.

What is the total magnification if you use the 10X objective 40X 100X?

Terms and Definitions.