How would you describe a bone cell?

1. Lean JM, Mackay A, Chow J, Chambers T. Osteocytic expression of mRNA for c-fos and IGF-I; an immediate early gene response to an osteogenic stimulus. American Journal of Physiology. 1996;270:937–945. [PubMed] [Google Scholar]

2. Stein GS, Lian JB. Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocrine Review. 1993;14:424–442. [PubMed] [Google Scholar]

3. Friedenstein AJ. Precursor cells of mechanocytes. International Review of Cytology. 1976;47:327–359. [PubMed] [Google Scholar]

4. Anderson HC. Vesicles associated with calcification in the matrix of epiphyseal cartilage. Journal of Cell Biology. 1969;41:59–72. [PMC free article] [PubMed] [Google Scholar]

5. Anderson HC, Reynolds JJ. Pyrophosphate stimulation of calcium uptake into cultured embryonic bones. Fine structure of matrix vescles and their role in calcification. Developmental Biology. 1973;34:211–227. [PubMed] [Google Scholar]

6. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T. Targeted distruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997;89:755–764. [PubMed] [Google Scholar]

7. Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IA, Stamp GWH, Beddington RSP, Mundlos S, Olsen BR, Selby PB, Owen MJ. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 1997;89:765–771. [PubMed] [Google Scholar]

8. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation. Cell. 1997;89:747–754. [PubMed] [Google Scholar]

9. Kim IS, Otto F, Zabel B, Mundlos S. Regulation of chondrocyte differentiation by Cbfa1. Mechanisms of Development. 1999;80:159–170. [PubMed] [Google Scholar]

10. Lee B, Thirunavukkarasu K, Zhou L, Pastore L, Baldini A, Hecht J, Geoffroy V, Ducy P, Karsenty G. Missense mutations abolishing DNA binding OSF2/CBFA1 in patients affected with cleidocranial dysplasia. Nature Genetics. 1997;16:307–310. [PubMed] [Google Scholar]

11. Ducy P, Starbuck M, Priemel M, Shen J, Pinero G, Geoffroy V, Amling M, Karsenty G. A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. Genes and Development. 1999;13:1025–1036. [PMC free article] [PubMed] [Google Scholar]

12. Hogan BL. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes and Development. 1996;10:1580–1594. [PubMed] [Google Scholar]

13. Kingsley DM, Bland AE, Grubber JM, Marker PC, Russell LB, Copeland NG, Jenkins NA. The mouse short ear skeletal morphogenesis locus is associated with defects in a bone morphogenetic member of the TGFβ superfamily. Cell. 1992;71:399–410. [PubMed] [Google Scholar]

14. Thomas JT, Kilpatrick MW, Lin K, Erlacher L, Lembessis P, Costa T, Tsipouras P, Luyten FP. Distruption of human limb morphogenesis by a dominant negative mutation in CDMP1. Nature Genetics. 1997;17:58–64. [PubMed] [Google Scholar]

15. Yamaguchi A, Katagiri T, Ikeda T, Wozney JM, Rosen V, Wang EA, Kahn AJ, Suda T, Yoshiki S. Recombinant human bone morphogenetic protein-2 stimulates osteoblastic maturation and inhibits myogenic differentiation in vitro. Journal of Cell Biology. 1991;113:681–687. [PMC free article] [PubMed] [Google Scholar]

16. Takuwa Y, Ohse C, Wang EA, Wozney JM, Yamashita K. Bone morphogenetic protein-2 stimulates alkaline phosphatase activity and collagen synthesis in cultured osteoblastic cells, MC3T3-E1. Biochemical and Biophysical Research Communications. 1991;174:96–101. [PubMed] [Google Scholar]

17. Nakase T, Takaoka K, Masuhara K, Shimizu K, Yoshikawa H, Ochi T. Interleukin-1β enhances and tumour necrosis factor-α inhibits bone morpogenetic protein-2 induce alkaline phosphatase activity in MC3T3-E1 osteoblastic cells. Bone. 1997;11:17–21. [PubMed] [Google Scholar]

18. Katagiri T, Yamaguchi, Ikeda T, Yoshiki S, Wozney JM, Rosen V, Wang EA, Tanaka H, Omura S, Suda T. The non-osteogenic mouse pluripotent cell line, C3H1OT1/2 is induced to differentiate into osteoblastic cells by recombinant human bone morphogenetic protein-2. Biochemical and Biophysical Research Communications. 1990;172:295–299. [PubMed] [Google Scholar]

19. Yamaguchi A, Ishizuya T, Kintou N, Wada Y, Katagiri T, Wozney JM, Rosen V, Yoshiki S. Effects of BMP-2, BMP-4 and BMP-6 on osteoblastic differentiation of bone marrow-derived stromal cell lines, ST2 and MC3T3-G2/PA6. Biochemical and Biophysical Research Communications. 1996;220:366–371. [PubMed] [Google Scholar]

20. Katagiri T, Yamaguchi A, Komaki M, Abe E, Takashi N, Ikeda T, Rosen V, Wozney JM, Fujisawa-Sehara A, Suda T. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. Journal of Cell Biology. 1994;127:1755–1766. [PMC free article] [PubMed] [Google Scholar]

21. Bitgood MJ, McMahon AP. Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Developmental Biology. 1995;172:126–138. [PubMed] [Google Scholar]

22. St-Jacques B, Hammerschmidt M, McMahon AP. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes and Development. 1999;13:2072–2086. [PMC free article] [PubMed] [Google Scholar]

23. Walker DG. Osteoporosis cured by temporary parabiosis. Science. 1973;180:875. [PubMed] [Google Scholar]

24. Lee SK, Goldring SR, Lorenzo JA. Expression of the calcitonin receptor in bone marrow cell cultures and in bone: a specific marker of the differentiated osteoclast that is regulated by calcitonin. Endocrinology. 1995;136:4572–4581. [PubMed] [Google Scholar]

25. Salo J, Lehenkari P, Mulari M, Metsikkö K, Väänänen HK. Removal of osteoclast bone resorption products by transcytosis. Science. 1997;276:270–273. [PubMed] [Google Scholar]

26. Blair H, Teitelbaum SL, Ghiselli R, Gluck S. Osteoclastic bone resorption by a polarised vacuolar proton pump. Science. 1989;245:855–857. [PubMed] [Google Scholar]

27. Hill PA, Docherty A, Bottomley K, O’Connell JP, Morphy JR, Reynolds SJ, Meikle MC. Inhibition of bone resorption in vitro by selective inhibitors of gelatinase and collagenase. Biochemical Journal. 1995;308:167–175. [PMC free article] [PubMed] [Google Scholar]

28. Hill PA, Buttle D, Jones S, Boyde A, Murata M, Reynolds JJ, Meikle MC. Inhibition of bone resorption by selective inactivators of cysteine proteinases. Journal of Cellular Biochemistry. 1994;56:118–130. [PubMed] [Google Scholar]

29. Drake FH, Robert AD, James IE, Conver JR, Debouck CC, Richardson S, Lee-Rykaczewski E, Coleman L, Rieman D, Barthlow R, Hastings G, Gowen M. Cathepsin K but not Cathepsins B, L or S is abundantly expressed in human osteoclasts. Journal of Biological Chemistry. 1996;271:12511–12516. [PubMed] [Google Scholar]

30. Silver IA, Murrills RJ, Etherington DJ. Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Experimental Cell Research. 1988;175:266–276. [PubMed] [Google Scholar]

31. Marks SCJ, Lane PW. Osteopetrosis, a new recessive skeletal mutation on chromosome 12 of the mouse. Journal of Heredity. 1976;67:11–18. [PubMed] [Google Scholar]

32. Klemsz MJ, McKercher SR, Celada A, Van Beveren C, Maki RA. The macrophage and B cell-specific transcription factor PU.1 is related to the ets oncogene. Cell. 1990;61:113–124. [PubMed] [Google Scholar]

33. Scott EW, Simon MC, Anastasi J, Singh H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science. 1994;265:1573–1577. [PubMed] [Google Scholar]

34. Johnson RS, Spiegelman BM, Papaioannou V. Pleitropic effects of a null mutation in the c-fos proto-oncogene. Cell. 1992;71:577–586. [PubMed] [Google Scholar]

35. Grigoriadis AE, Wang ZQ, Cecchini MG, Hofstetter W, Felix R, Fleisch HA, Wagner EF. c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodelling. Science. 1994;266:443–448. [PubMed] [Google Scholar]

36. Verma IM, Stevenson JK, Schwarz EM, Van Antwerp D, Miyamoto S. Rel/NF-κB/IκB family: intimate tales of association and dissociation. Genes and Development. 1995;9:2723–2735. [PubMed] [Google Scholar]

37. Franzoso G, Carlson L, Xing L, Poljak L, Shores EW, Brown KD, Leonardi A, Tran T, Boyce BF, Siebenlist U. Requirement for NF-κB in osteoclast and B-cell development. Genes and Development. 1997;11:3482–3496. [PMC free article] [PubMed] [Google Scholar]

38. Boyce BF, Yoneda T, Lowe C, Soriano P, Mundy GR. Requirement of pp60c-src expression for osteoclasts to form ruffled borders and resorb bone in mice. Journal of Clinical Investigation. 1992;90:1622–1627. [PMC free article] [PubMed] [Google Scholar]

39. Hodgkinson CA, Moore KJ, Nakayama A, Steingrimsson Copelan NG, Jenkins NA, Arnheiter H. Mutations at the mouse micropthalmia are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell. 1993;74:395–404. [PubMed] [Google Scholar]

40. Yoshida H, Hayashi SI, Kunisada T, Ogawa M, Nishikawa S, Okamura H, Sudo T, Shultz LD, Nishikawa SI. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature. 1990;345:442–444. [PubMed] [Google Scholar]

41. Fuller K, Owens JM, Jagger CJ, Wilson A, Moss R, Chambers TJ. Macrophage colony-stimulating factor stimulates survival and chemotactic behavior in isolated osteoclasts. Journal of Experimental Medicine. 1993;178:1733–1744. [PMC free article] [PubMed] [Google Scholar]

42. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Lüthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliot R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Amgen EST Program. Boyle WJ. Osteoprogeterin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89:309–319. [PubMed] [Google Scholar]

43. Yasuda H, Shima N, Nakagawa N, Mochizuki SI, Yano K, Fujise N, Sato Y, Goto M, Yamaguchi K, Kuriyama M, Kanno T, Murakami A, Tsuda E, Morinaga T, Higashio K. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): A mechanism, by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology. 1998;139:1329–1337. [PubMed] [Google Scholar]

44. Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL, Boyle WJ, Simonet WS. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes and Development. 1998;12:1260–1268. [PMC free article] [PubMed] [Google Scholar]

45. Mizuno A, Amizuka N, Irie K, Murakami A, Fujise N, Kanno T, Sato Y, Nakagawa N, Yasuda H, Mochizuki S, Gomibuchi T, Yano K, Shima N, Washida N, Tsuda E, Morinaga T, Higashio K, Ozawa H. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor /osteoprotegerin. Biochemical and Biophysical Research Communications. 1998;247:610–615. [PubMed] [Google Scholar]

46. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliot R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93:165–176. [PubMed] [Google Scholar]

47. Wong BR, Josien R, Lee Sy, Sauter B, Li HL, Steinman RM, Choi Y. TRANCE [Tumor Necrosis Factor (TNF)-related activation-induced cytokine], a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. Journal of Experimental Medicine. 1997;186:2075–2080. [PMC free article] [PubMed] [Google Scholar]

48. Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, Dubose RF, Cosman D, Galibert L. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature. 1997;390:175–179. [PubMed] [Google Scholar]

49. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki SI, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitor factor and is identical to TRANCE/RANKL. Proceedings of the National Academy of Sciences of the United States of America. 1998;95:3597–3602. [PMC free article] [PubMed] [Google Scholar]

50. Burgess TL, Qian YX, Kaufman S, Ring BD, Van G, Capparelli C, Kelley M, Hsu H, Boyle WJ, Dunstan CR, Hu S, Lacey DL. The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. The Journal of Cell Biology. 1999;14:527–538. [PMC free article] [PubMed] [Google Scholar]

51. Horwood NJ, Kartsogiannis V, Quinn JM, Romas E, Martin TJ, Gillespie MT. Activated T lymphocytes support osteoclast formation in vitro. Biochemical and Biophysical Research Communications. 1999;265:144–150. [PubMed] [Google Scholar]

52. Rifas L, Arackal S, Weitzmann MN. Inflammatory T cells rapidly induce differentiation of human bone marrow stromal cells into mature osteoblasts. Journal of Cellular Biochemistry. 2003;88:650–659. [PubMed] [Google Scholar]

53. Hofbauer LC, Gori F, Riggs LR, Lacey DL, Dunstan CR, Spelsberg TC, Khosla S. Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: potential paracrine mechanisms of glucocorticoid-induced osteoporosis. Endocrinology. 1999;140:4382–4389. [PubMed] [Google Scholar]

54. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Caparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penniger JM. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature. 1999;397:315–323. [PubMed] [Google Scholar]

55. Khosla S. Minireview: The OPG/RANKL/RANK system. Endocrinology. 2001;142:5050–5055. [PubMed] [Google Scholar]

56. Parfitt AM. The coupling of bone formation to bone resorption: a critical analysis of the concept and of its relevance to the pathogenesis of osteoporosis. Metabolic Bone Disease and Related Research. 1982;4:1–6. [PubMed] [Google Scholar]

57. Manolagas SC, Jilka RL. Bone marrow, cytokines, and bone remodelling. Emerging insights into the pathophysiology of osteoporosis. New England Journal of Medicine. 1995;332:305–311. [PubMed] [Google Scholar]

58. McKee MD, Farach-Carson MC, Butler WT, Hauschka PV, Nanci A. Ultrastructural immunolocalization of non-collagenous (osteopontin and osteocalcin) and plasma (albumin and α2HS-Glycoprotein) proteins in rat bone. Journal of Bone and Mineral Research. 1993;8:485–496. [PubMed] [Google Scholar]