Is nuclear energy derived from the sun

The energy which is not derived from the sun is: A. biomass B. fossil fuels C. nuclear energy D. geothermal energy

Answer

Is nuclear energy derived from the sun
Verified

Hint:To solve this problem learn about each type of energy source biomass, fossil fuels, nuclear energy, and geothermal energy -that is given in the option given, and relate them if they are derivable from sun’s energy directly or indirectly.

Complete answer:
Fossil fuels are the type of fuels which we get from the earth's surface and formed by the decomposition of living organisms- plants, animals, etc. over a certain period of millions of years. Fossil fuels are derived from the sun's energy directly or indirectly.

Biomass is a type of energy source which we get by the decomposition of various waste bodies or residuals by utilizing their energy .The source of biomass energy can be seeds, corn, cow dunk etc. This energy is also derived from the sun's energy indirectly.

Nuclear energy is a type of energy which is seen due to the property of radioactivity in certain elements. Nuclear energy is the type of energy when unstable nuclei breaks into smaller nuclei as a byproduct we get we get energy. This is called nuclear fission. When two light atoms joined together they release an enormous amount of energy this is called nuclear fission. So, this form of energy is derivable from the sun's energy directly or indirectly.

Geothermal energy is a type of thermal energy of the earth core. We know that this type of thermal energy is not related to the sun's energy since this energy is directly harnessed from the earth’s crust. From the above discussions, we can easily say that geothermal energy and nuclear energy cannot be derived from the sun's energy whereas fossil fuels and biomass energy are directly or indirectly derived from the energy of the sun.

Therefore, the options C and D are correct.

Note:Do not confuse with geothermal energy as the heat energy derived from the sun because geothermal energy is a type of energy which is due to the hot core of the earth. The sun is powered by nuclear energy since the sun has a huge source of hydrogen and due to nuclear fission and fusion the sun gets the heat energy.

Nuclear Explained

31 Aug 2022

Is nuclear energy derived from the sun

Nuclear energy is a form of energy released from the nucleus, the core of atoms, made up of protons and neutrons. This source of energy can be produced in two ways: fission – when nuclei of atoms split into several parts – or fusion – when nuclei fuse together.

The nuclear energy harnessed around the world today to produce electricity is through nuclear fission, while technology to generate electricity from fusion is at the R&D phase. This article will explore nuclear fission. To learn more about nuclear fusion, click here.

What is nuclear fission?

Nuclear fission is a reaction where the nucleus of an atom splits into two or more smaller nuclei, while releasing energy.

For instance, when hit by a neutron, the nucleus of an atom of uranium-235 splits into two smaller nuclei, for example a barium nucleus and a krypton nucleus and two or three neutrons. These extra neutrons will hit other surrounding uranium-235 atoms, which will also split and generate additional neutrons in a multiplying effect, thus generating a chain reaction in a fraction of a second.

Each time the reaction occurs, there is a release of energy in the form of heat and radiation. The heat can be converted into electricity in a nuclear power plant, similarly to how heat from fossil fuels such as coal, gas and oil is used to generate electricity.

Is nuclear energy derived from the sun

Nuclear fission (Graphic: A. Vargas/IAEA)

How does a nuclear power plant work?

Inside nuclear power plants, nuclear reactors and their equipment contain and control the chain reactions, most commonly fuelled by uranium-235, to produce heat through fission. The heat warms the reactor’s cooling agent, typically water, to produce steam. The steam is then channelled to spin turbines, activating an electric generator to create low-carbon electricity.

Find more details about the different types of nuclear power reactors on this page.

Is nuclear energy derived from the sun

Pressurized water reactors are the most used in the world. (Graphic: A. Vargas/IAEA)

Mining, enrichment and disposal of uranium

Uranium is a metal that can be found in rocks all over the world. Uranium has several naturally occurring isotopes, which are forms of an element differing in mass and physical properties but with the same chemical properties. Uranium has two primordial isotopes: uranium-238 and uranium-235. Uranium-238 makes up the majority of the uranium in the world but cannot produce a fission chain reaction, while uranium-235 can be used to produce energy by fission but constitutes less than 1 per cent of the world’s uranium.

To make natural uranium more likely to undergo fission, it is necessary to increase the amount of uranium-235 in a given sample through a process called uranium enrichment. Once the uranium is enriched, it can be used effectively as nuclear fuel in power plants for three to five years, after which it is still radioactive and has to be disposed of following stringent guidelines to protect people and the environment. Used fuel, also referred to as spent fuel, can also be recycled into other types of fuel for use as new fuel in special nuclear power plants.

What is the Nuclear Fuel Cycle?

The nuclear fuel cycle is an industrial process involving various steps to produce electricity from uranium in nuclear power reactors. The cycle starts with the mining of uranium and ends with the disposal of nuclear waste.

Nuclear waste

The operation of nuclear power plants produces waste with varying levels of radioactivity. These are managed differently depending on their level of radioactivity and purpose. See the animation below to learn more about this topic.

Radioactive Waste Management

Radioactive waste makes up a small portion of all waste. It is the by-product of millions of medical procedures each year, industrial and agricultural applications that use radiation and nuclear reactors that generate around 11 % of global electricity. This animation explains how radioactive waste is managed to protect people and the environment from radiation now and in the future.

The next generation of nuclear power plants, also called innovative advanced reactors, will generate much less nuclear waste than today’s reactors. It is expected that they could be under construction by 2030.

Nuclear power and climate change

Nuclear power is a low-carbon source of energy, because unlike coal, oil or gas power plants, nuclear power plants practically do not produce CO2 during their operation. Nuclear reactors generate close to one-third of the world’s carbon free electricity and are crucial in meeting climate change goals.

To find out more about nuclear power and the clean energy transition, read this edition of the IAEA Bulletin.

What is the role of the IAEA?

  • The IAEA establishes and promotes international standards and guidance for the safe and secure use of nuclear energy to protect people and the environment.
  • The IAEA supports existing and new nuclear programmes around the world by providing technical support and knowledge management. Through the Milestones Approach, the IAEA provides technical expertise and guidance to countries that want to develop a nuclear power programme as well as to those who are decommissioning theirs.
  • Through its safeguards and verification activities, the IAEA oversees that nuclear material and technologies are not diverted from peaceful use.
  • Review missions and advisory services led by the IAEA provide guidance on the activities necessary during the lifetime of production of nuclear energy: from the mining of uranium to the construction, maintenance and decommissioning of nuclear power plants and the management of nuclear waste.
  • The IAEA administers a reserve of low enriched uranium (LEU) in Kazakhstan, which can be used as a last resort by countries that are in urgent need of LEU for peaceful purposes.

This article was first published on iaea.org on 2 August 2021.

More

Last update: 31 Aug 2022

Which energy is derived from sun?

The sun is powered by nuclear energy since the sun has a huge source of hydrogen and due to nuclear fission and fusion the sun gets the heat energy.

Where is nuclear energy derived?

Nuclear energy originates from the splitting of uranium atoms – a process called fission. This generates heat to produce steam, which is used by a turbine generator to generate electricity. Because nuclear power plants do not burn fuel, they do not produce greenhouse gas emissions.

Which energy is not derived from sun?

Nuclear energy is not derived from the sun. Nuclear energy is the energy in the nucleus of an atom.