What is produced goes out from the electron transport chain?

If you believe that content available by means of the Website (as defined in our Terms of Service) infringes one or more of your copyrights, please notify us by providing a written notice (“Infringement Notice”) containing the information described below to the designated agent listed below. If Varsity Tutors takes action in response to an Infringement Notice, it will make a good faith attempt to contact the party that made such content available by means of the most recent email address, if any, provided by such party to Varsity Tutors.

Your Infringement Notice may be forwarded to the party that made the content available or to third parties such as ChillingEffects.org.

Please be advised that you will be liable for damages (including costs and attorneys’ fees) if you materially misrepresent that a product or activity is infringing your copyrights. Thus, if you are not sure content located on or linked-to by the Website infringes your copyright, you should consider first contacting an attorney.

Please follow these steps to file a notice:

You must include the following:

A physical or electronic signature of the copyright owner or a person authorized to act on their behalf; An identification of the copyright claimed to have been infringed; A description of the nature and exact location of the content that you claim to infringe your copyright, in \ sufficient detail to permit Varsity Tutors to find and positively identify that content; for example we require a link to the specific question (not just the name of the question) that contains the content and a description of which specific portion of the question – an image, a link, the text, etc – your complaint refers to; Your name, address, telephone number and email address; and A statement by you: (a) that you believe in good faith that the use of the content that you claim to infringe your copyright is not authorized by law, or by the copyright owner or such owner’s agent; (b) that all of the information contained in your Infringement Notice is accurate, and (c) under penalty of perjury, that you are either the copyright owner or a person authorized to act on their behalf.

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

  1. The Electron Transport Chain: ATP for Life in the Fast Lane
  2. Contributors and Attributions

Learning Outcomes

  • Summarize the electron transport chain.
  • Recognize that electron transport chain is the third and final stage of aerobic cellular respiration.
  • Identify the products of the citric acid cycle.

What do trains, trucks, boats, and planes all have in common? They are ways to transport. And they all use a lot of energy. To make ATP, energy must be "transported" - first from glucose to NADH, and then somehow passed to ATP. How is this done? With an electron transport chain, the third stage of aerobic respiration. This third stage uses energy to make energy.

The Electron Transport Chain: ATP for Life in the Fast Lane

At the end of the Krebs Cycle, energy from the chemical bonds of glucose is stored in diverse energy carrier molecules: four ATPs, but also two FADH\(_2\) and ten NADH molecules. The primary task of the last stage of cellular respiration, the electron transport chain, is to transfer energy from the electron carriers to even more ATP molecules, the "batteries" which power work within the cell.

Pathways for making ATP in stage 3 of aerobic respiration closely resemble the electron transport chains used in photosynthesis. In both electron transport chains, energy carrier molecules are arranged in sequence within a membrane so that energy-carrying electrons cascade from one to another, losing a little energy in each step. In both photosynthesis and aerobic respiration, the energy lost is harnessed to pump hydrogen ions into a compartment, creating an electrochemical gradient or chemiosmotic gradient across the enclosing membrane. And in both processes, the energy stored in the chemiosmotic gradient is used with ATP synthase to build ATP.

For aerobic respiration, the electron transport chain or "respiratory chain" is embedded in the inner membrane of the mitochondria (see figure below). The FADH\(_2\) and NADH molecules produced in glycolysis and the Krebs Cycle, donate high-energy electrons to energy carrier molecules within the membrane. As they pass from one carrier to another, the energy they lose is used to pump hydrogen ions into the mitochondrial intermembrane space, creating an electrochemical gradient. Hydrogen ions flow "down" the gradient - from outer to inner compartment - through the ion channel/enzyme ATP synthase, which transfers their energy to ATP. Note the paradox that it requires energy to create and maintain a concentration gradient of hydrogen ions that are then used by ATP synthase to create stored energy (ATP). In broad terms, it takes energy to make energy. Coupling the electron transport chain to ATP synthesis with a hydrogen ion gradient is chemiosmosis, first described by Nobel laureate Peter D. Mitchell. This process, the use of energy to phosphorylate ADP and produce ATP is also known as oxidative phosphorylation.

What is produced goes out from the electron transport chain?
Figure \(\PageIndex{1}\): The third stage of cellular respiration uses the energy stored during the earlier stages in NADH and FADH\(_2\) to make ATP. Electron transport chains embedded in the mitochondrial inner membrane capture high-energy electrons from the carrier molecules and use them to concentrate hydrogen ions in the intermembrane space. Hydrogen ions flow down their electrochemical gradient back into the matrix through ATP synthase channels which capture their energy to convert ADP to ATP. Notice that the process regenerates NAD\(^+\), supplying the electron acceptor molecule needed in glycolysis. (CC BY-NC 3.0; Mariana Ruiz Villarreal (LadyofHats) for the CK-12 Foundation).

After passing through the electron transport chain, low-energy electrons and low-energy hydrogen ions combine with oxygen to form water. Thus, oxygen's role is to drive the entire set of ATP-producing reactions within the mitochondrion by accepting "spent" hydrogens. Oxygen is the final electron acceptor, no part of the process - from the Krebs Cycle through the electron transport chain- can happen without oxygen.

The electron transport chain can convert the energy from one glucose molecule's worth of \(FADH_2\) and \(NADH\) + \(\ce{H^+}\) into as many as 34 ATP. When the four ATP produced in glycolysis and the Krebs Cycle are added, the total of 38 ATP fits the overall equation for aerobic cellular respiration:

\[ \ce{6O2} + \underbrace{\ce{C6H12O6}}_{\text{stored chemical energy}} + \ce{38 ADP} + \text{39 P}_\text{i} \rightarrow \underbrace{\ce{38 ATP}}_{\text{stored chemical energy}} + \ce{6CO2} + \ce{6 H2O}\]

Aerobic respiration is complete. If oxygen is available, cellular respiration transfers the energy from one molecule of glucose to 38 molecules of ATP, releasing carbon dioxide and water as waste. "Deliverable" food energy has become energy which can be used for work within the cell - transport within the cell, pumping ions and molecules across membranes, and building large organic molecules. Can you see how this could lead to "life in the fast lane" compared to anaerobic respiration (glycolysis alone)?

Contributors and Attributions

  • Allison Soult, Ph.D. (Department of Chemistry, University of Kentucky)


This page titled 15.4: The Electron Transport Chain is shared under a CK-12 license and was authored, remixed, and/or curated by CK-12 Foundation.

What is produced when the electrons leave the electron transport chain?

ATP is produced as a product of the electron transport chain, while glucose and CO2 play a role in earlier processes of cellular respiration.

What happens after electron transport chain?

After passing through the electron-transport chain, the “spent” electrons combine with oxygen to formwater. This is why oxygen is needed; in the absence of oxygen, this process cannot occur.