What are the stages of fetal development?

Soon after fertilization, the embryo is created from a small group of cells that are constantly dividing inside of a complex structure called the blastocyst. It is formed by two groups of cells, inner and outer cells, and fluids. The blastocyst stays inside a protective cover during maturation called zona pellucida, which could be described as an egg shell. The outer cells are located right below this cover, which will create the future placenta and surrounding tissues to support fetal development in the uterus. The inner cells of the blastocyst will become the different tissues and organs of the human body, such as bones, muscles, skin, liver, and heart.

The cells within the blastocyst grow fast, they go through many changes and convert into more specialized cells, making the structure very tight. In humans, these changes happen during the first few days of development, before the implantation in the uterus. At this stage, the zona pellucida (similar to an egg shell) breaks and releases the blastocyst. It moves through the Fallopian tubes towards the uterus and implants around day ten.

Problems With Blastocyst Development

Blastocyst arrest is the term for when the cells fail to divide stopping the developmental progress of the embryo. While the exact causes of blastocyst arrest are not fully understood, they are typically related to genetic abnormalities in the sperm or egg.

3. Blastocyst Implantation

When the blastocyst reaches the uterus it implants in the endometrium, the mucus membrane which lines the uterus. The external cells of the blastocyst and the uterine inner lining, together, will create the future placenta. The placenta is a structure that transfers nutrients to the baby and removes his/her wastes.

Problems with Implantation

When a fertilized egg is able to implant in the uterus but fails to develop it can be described as an empty gestational sac or “blighted ovum”. It often occurs due to the presence of abnormalities in the chromosomes of the sperm, the ovum or the fertilized egg or cell division. This event may happen in the early days of pregnancy.

Sometimes, a fertilized egg will not implant in the uterus. There is scientific evidence that the endometrium is responsible for the selection of the embryo before facilitating the implantation. This mechanism eventually results in implantation of healthy embryos or rejection of abnormal embryos. Some human embryos have alterations in their genes called mutations that can delay or obstruct normal development. These impairments make them inappropriate for natural implantation and will increase the likelihood for miscarriage.

4. Embryo Development

As the blastocyst reaches the final steps in the implantation process into the inner lining of the uterus, it evolves into a structure called an embryo. This is the time when internal organs and external structures develop. The mouth, lower jaw, throat are emerging, while the blood circulation system starts its evolution and a heart tube is created. The ears arise and arms, legs, fingers, toes, and eyes are being shaped. The brain and the spinal cord are already formed, while the digestive tract and sensory organs start their development. The first bones are replacing the cartilage.

After ten-twelve weeks of pregnancy, the embryo moves into the final stage of development, a fetus.

Problems with Embryo Development

Severe problems with embryonic development can occur as early as the first 3 weeks.

With so many internal organ systems and external structures beginning specialization and development in the embryo, the developing organism is particularly sensitive to damage from genetic abnormalities and environmental exposures. These genetic abnormalities can range from spontaneous genetic mutations, to improper chromosome arrangement that can potentially affect the development of important structures like the heart or brain.

Alongside genetic abnormalities, any number of environmental factors (malnutrition, infections, disease, toxic exposures) can have an effect on genetic expression potentially proving to be lethal to the developing embryo.

5. Fetal Development

By the twelfth week of fertilization the embryo moves into the final stage of development called the fetal stage. By now, the fetus has formed all of the organs and structures necessary for a baby, but those organs still need to grow and develop.

At three months of pregnancy, the upper and lower extremities of the fetus are completely developed. Ears and teeth are formed and the reproductive organs have evolved. At the end of this month, the fetus has completed the expansion of most of the circulatory and urinary systems and its length is about 5 inches.

At six months, the fetus can respond to sounds and is around 12 inches long. The fetus continues to develop and grow changing position and responding to sounds, and stimuli. The length of the little body can reach 14 inches.

The fetus becomes a baby at month eight. The brain is evolving quickly so the baby can see and hear, although the respiratory system requires maturation. The baby can weigh approximately 5 pounds. Close to the end of the pregnancy at month 9, the baby responds to stimuli, can move the whole body but space around the new human being is becoming too tight.

If the baby had not changed his/her position inside the uterus, this is the right time to drop down into the pelvis towards the birth canal to face the world.

Problems with Fetal Development

Because all major structures are already formed in the fetus, the fetus is not as sensitive as the embryo to damage from environmental exposures. This is why after the first trimester, a miscarriage is much less likely. However, toxic environmental exposures can contribute to physiological abnormalities or minor congenital malformations.

Sources:

Home Health & Medicine Anatomy & Physiology

prenatal development, also called antenatal development, in humans, the process encompassing the period from the formation of an embryo, through the development of a fetus, to birth (or parturition).

The human body, like that of most animals, develops from a single cell produced by the union of a male and a female gamete (or sex cell). This union marks the beginning of the prenatal period, which in humans encompasses three distinct stages: (1) the pre-embryonic stage, the first two weeks of development, which is a period of cell division and initial differentiation (cell maturation), (2) the embryonic period, or period of organogenesis, which lasts from the third to the eighth week of development, and (3) the fetal period, which is characterized by the maturation of tissues and organs and rapid growth of the body. The prenatal period ends with parturition and is followed by a long postnatal period. Only at about age 25 years are the last progressive changes completed.

embryos of different animals

Much of the embryonic developmental machinery (the cellular apparatus) used in human development is similar to that used by other vertebrates as well as some invertebrates. The machinery is essential for four processes: cell proliferation, cell specialization, cell interaction, and cell movement. During these processes, the approximately 20,000–25,000 genes in the human genome give rise to as many as 100,000 different proteins, which give the conceptus form and substance.

sperm

The development and liberation of the male and female gametes are steps preparatory to their union through the process of fertilization. Active movements first bring some spermatozoa into contact with follicle cells adhering to the secondary oocyte (immature egg), which still lies high in the uterine tube. The sperm then propel themselves past the follicle cells and attach to the surface of the gelatinous zona pellucida enclosing the oocyte. Some sperm heads successfully penetrate this capsule by means of an enzyme they secrete, hyaluronidase, but only one sperm makes contact with the cell membrane and cytoplasm of the oocyte and proceeds farther. This is because the invading sperm head releases a substance that initiates surface changes in the oocyte that render its membrane impermeable to other spermatozoa.

The successful sperm is engulfed by a conical protrusion of the oocyte cytoplasm and is drawn inward. Once within the periphery of the oocyte, the sperm advances toward the centre of the cytoplasm; the head swells and converts into a typical nucleus, now called the male pronucleus, and the tail detaches. It is during the progress of these events that the oocyte initiates its final maturation division. Following the separation of the second polar body (one or two polar bodies are produced during division), the oocyte nucleus typically reconstitutes and is then called the female pronucleus of the ripe egg. It is now ready to unite with its male counterpart and thereby consummate the total events of fertilization.

The two pronuclei next approach, meet midway in the egg cytoplasm, and lose their nuclear membranes. Each resolves its diffuse chromatin material into a complete single set of 23 chromosomes. Each chromosome is composed of two chromatids held together by a centromere. During mitosis (ordinary cell proliferation by division), the centromeres attach to a bundle of microtubules known as the mitotic spindle, which is formed by centrioles (cylindrical cell structures). This climax in the events of fertilization creates a joint product known as the zygote, which contains all the factors essential for the development of a new individual.

Get a Britannica Premium subscription and gain access to exclusive content. Subscribe Now

The fundamental results of fertilization are the following: (1) reassociation of a male and female set of chromosomes, thus restoring the full number and providing the basis for biparental inheritance and for variation), (2) establishment of the mechanism of sex determination for the new individual (this depending on whether the male set of chromosomes included the X or the Y chromosome), and (3) activation of the zygote, initiating further development.

first stages of human development

Through the process of mitosis, the relatively enormous zygote directly subdivides into many smaller cells of conventional size, suitable as early building units for the future organism. This process is called cleavage and the resulting cells are blastomeres. The tendency for the progressive increase in cell numbers to follow a doubling sequence is soon disturbed and then lost. Each blastomere receives the full complement of paternal and maternal chromosomes.

Subdivision of the zygote into blastomeres begins while it is still high in the uterine tube. The cohering blastomeres are transported downward chiefly, at least, by muscular contractions of the tubal wall. Such transport is relatively rapid until the lower end of the tube is reached, and here cleavage continues for about two days before the multicellular cluster is expelled into the uterus. The full reason for this delay is not clear, but it serves to retain the cleaving blastomeres until the uterine lining is suitably prepared to receive its prospective guest.

Since the human egg contains little inert yolk material and since this is distributed rather evenly throughout the cytoplasm, the daughter cells of each mitosis are practically equal in size and composition. This type of cleavage is known as total, equal cleavage. The sticky blastomeres adhere, and the cluster is still retained for a time within the gelatinous capsule—the zona pellucida—that had enclosed the growing and ovulated oocyte. There is no growth in the rapidly dividing blastomeres, so that the total mass of living substance does not increase during the cleavage period.

By the fourth day after fertilization, a cluster of about 12 blastomeres passes from the uterine tube into the uterus. At this stage the cluster is called a morula. By the time some 30 blastomeres have been produced, pools of clear fluid accumulate between some of the internal cells, and these spaces soon coalesce into a common subcentral cavity. The resulting hollow cellular ball is a blastula of a particular type that occurs in mammals and is called a blastocyst; its cavity is the blastocoel.

An internal cellular cluster, eccentric in position and now named the inner cell mass, will develop into the embryo. The external capsule of smaller cells, enveloping the segregated internal cluster, constitutes the trophoblast. It will contribute to the formation of a placenta and fetal membranes. During its stay within the uterine cavity, the blastocyst loses its gelatinous capsule, imbibes fluid, and expands to a diameter of 0.2 mm (0.008 inch); this is nearly twice the diameter of the zygote at the start of cleavage. Probably several hundred blastomeres have formed before the blastocyst attaches to the uterine lining.