What is the force of a muscle?

There is potential for a huge amount of force to be created when muscles contract, however we don’t always want all of that force.  Imagine typing on your computer if the muscles of your hands and arms contracted with their full force?  Microsoft would like it as you'd go through keyboards with alarming regularity.  So in order to develop simple and complex skills like writing, talking, running and jumping, the force produced by muscles must be graded specifically.

Force in muscles is ‘graded’ through the control of the frequency (how often) of the firing of impulses at the neuromuscular junction (point where the motor neuron connects to the muscle).  

Looking at the diagram below you can see the nerves feeding into the muscle.  The more muscle fibres one nerve controls the bigger the motor unit. 

 

What is the force of a muscle?

In areas of your body where lots of force is produced and finesse is not a requirement, (think legs for instance) there will be few motor units and those motor units will be large.  In areas of your body where finesse is required, fine movements with gentle force, lots of small motor units will exist.  This simply gives the brain more control over that part of the body (think fingers in this case).

If we want a tiny amount of force the motor unit might just receive one little brief signal from the nerve, calcium would flood the muscle cell and a contraction would occur, and the calcium would quickly be pumped back out and the contraction will finish.  When a motor unit does this it’s called a single or simple twitch, as seen on the image below.  Think of it as a ‘blip’ on the radar.  With a single or simple twitch not much force is produced as only a limited number of actin and myosin cross bridges have time to bind.

 

What is the force of a muscle?

If more force is required the message at the neuromuscular junction of the motor unit is sustained.  This means that although the calcium pump in the muscle cell is removing calcium, new calcium is being cycled back into the muscle cell to enable the contraction to continue.

In this situation more and more myosin/actin cross bridges can form and the force produced in the motor unit climbs.  This is called ‘summation’ (or in lay terms - adding up) where a motor unit begins to develop more force due to a higher frequency of nerve signal, as seen in the image above.

When a motor unit receives continuous stimulation from the nerve feeding it, which is at a frequency that is high enough that calcium is always present in the muscle tissue, it will eventually reach its full force producing capacity.  This is called a ‘tetanic’ contraction, as seen in the image above.

If the nervous signal is continuous tetanus can be sustained until either ATP (energy) can no longer be provided in the muscle, or the nervous system fatigues and can no longer create impulses quickly enough to keep the signal going and cause the release of calcium into the muscle cell which is vital for muscular contraction.

The grading of muscular force and exercise performance

We know that muscular contractions can be graded from a single twitch through to a tetanic contraction depending on the frequency of the impulses being received at the muscle, but what does that mean when it comes to exercise performance?

So if you get enough single twitches in quick succession it will lead to summation and eventually reach the threshold of tetanus and the full contraction and subsequent movement (i.e. walking, typing, jumping) will occur. 

What is the force of a muscle?
From this point the longer the muscle fibres are in a state of tetanus or if more motor units are also stimulated to the point of tetanus the greater the force produced.

For example, in order to do a body weight squat sufficient frequency in impulses will be received by the working muscles to take them from a state of rest through to single twitch, summation and eventually tetanus (squatting). 

What is the force of a muscle?
The way in which the impulses are graded means the movement ends up smooth and flowing.

If you decided to put a big weight on your back and do some more squats you would require more force to be produced in order to complete the movement.  At this point the same sequence of events occurs, only more motor units reach tetanus at the same time.  This results in more muscle being contracted and therefore enough force is produced for you to complete the movement.

How do force, velocity and power relate?

Force (strength), velocity (speed) and power (combination of strength and speed) all relate to our muscular contractions and how they are graded i.e. fast, slow, strong, weak etc.  They also relate directly to the way you train your personal training clients.

For example a client might want to improve their maximal strength in the bench press or their squat jump height for volleyball.  Understanding how these three elements relate will help ensure you train your clients in the right way to get them their desired results.

The graph below shows the relationship between the velocity (speed) of movement and the amount of force generated.  Remember that at any velocity fast twitch fibres can produce more force.  This is most dramatic at higher velocities.

 

What is the force of a muscle?

At zero velocity you can see the muscles can produce maximal force.  This is because the load isn’t moving (think of pushing as hard as you can against a wall or a weight you couldn’t shift) so the force you can generate will be maximal because your muscles will have all the time they need to contract. 

As the velocity of the movement increases the force you can produce starts to drop.  This is because less of the actin and myosin filaments have a chance to be bind and contract.

At very fast velocities the force you can produce is quite low as very few of the actin and myosin cross bridges have time to bind, and very few are bound at any moment.  The faster you go the less force you have time to produce within the muscle.

When we look at the relationship between power and velocity on the graph below, we see a different shaped curve. 

  

What is the force of a muscle?

Power is calculated as follows:

Power = work / time.  Work is the force x the distance.  So if you moved a 60kg weight one metre in just one second you could calculate power as follows:  60 x 1 / 1 = 60 watts

So, if we move fast we have increased power because we are doing things in less time.  However, there is a trade off in that as we speed up more and more we produce less force, which means less power again.  So the power curve peaks at an ‘optimal’ velocity in the middle where the time taken and the force being produced is balanced.

The implications of this are that if you want to be very powerful with an action (for instance a punch) you need to move quickly and forcefully, but not try to go so fast that you don’t allow your muscles the time they need to generate all the force they could. 

An example is that a jab in boxing is fast, but not as powerful as a right cross.  In the jab you move very quickly but the force you can muster in your muscles is limited due to the velocity of the movement.  There is also less time for calcium to enter the muscle and therefore fewer actin and myosin cross-bridges form and thus less power can be created.  Conversely, the hook is slower, but more powerful, as you have more time to use more of the muscle available to you.

Luckily, with training, you can improve power at each of the velocities on the curve.  So maybe one day your hook can be as quick as your jab, but very forceful still.

By the end of this section, you will be able to:

  • Explain the forces exerted by muscles.
  • State how a bad posture causes back strain.
  • Discuss the benefits of skeletal muscles attached close to joints.
  • Discuss various complexities in the real system of muscles, bones, and joints.

Muscles, bones, and joints are some of the most interesting applications of statics. There are some surprises. Muscles, for example, exert far greater forces than we might think. Figure 1 shows a forearm holding a book and a schematic diagram of an analogous lever system. The schematic is a good approximation for the forearm, which looks more complicated than it is, and we can get some insight into the way typical muscle systems function by analyzing it.

Muscles can only contract, so they occur in pairs. In the arm, the biceps muscle is a flexor—that is, it closes the limb. The triceps muscle is an extensor that opens the limb. This configuration is typical of skeletal muscles, bones, and joints in humans and other vertebrates. Most skeletal muscles exert much larger forces within the body than the limbs apply to the outside world. The reason is clear once we realize that most muscles are attached to bones via tendons close to joints, causing these systems to have mechanical advantages much less than one. Viewing them as simple machines, the input force is much greater than the output force, as seen in Figure 1.

What is the force of a muscle?

Figure 1. (a) The figure shows the forearm of a person holding a book. The biceps exert a force FB to support the weight of the forearm and the book. The triceps are assumed to be relaxed. (b) Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint as seen in Example 1.

Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in Figure 1, and compare this force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant figures.

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is FB; that of the elbow joint is FE; that of the weights of the forearm is wa, and its load is wb. Two of these are unknown (FB and FE), so that the first condition for equilibrium cannot by itself yield FB. But if we use the second condition and choose the pivot to be at the elbow, then the torque due to FE is zero, and the only unknown becomes FB.

Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is counterclockwise; thus, the second condition for equilibrium (net τ = 0) becomes

r2wa + r3wb = r1FB

Note that sin θ = 1 for all forces, since θ = 90º for all forces. This equation can easily be solved for FB in terms of known quantities, yielding

[latex]{F}_{\text{B}}=\frac{{r}_{2}{w}_{\text{a}}+{r}_{3}{w}_{\text{b}}}{{r}_{1}}\\[/latex].

Entering the known values gives

[latex]{F}_{\text{B}}=\frac{\left(0\text{.}\text{160}\text{m}\right)\left(2\text{.}\text{50}\text{kg}\right)\left(9\text{.}\text{80}{\text{m/s}}^{2}\right)+\left(0\text{.}\text{380}\text{m}\right)\left(4\text{.}\text{00}\text{kg}\right)\left(9\text{.}\text{80}{\text{m/s}}^{2}\right)}{0\text{.}\text{0400}\text{ m}}\\[/latex]

which yields

FB = 470 N.

Now, the combined weight of the arm and its load is (6.50 kg)(9.80 m/s2) = 63.7 N, so that the ratio of the force exerted by the biceps to the total weight is

[latex]\frac{{F}_{\text{B}}}{{w}_{\text{a}}+{w}_{\text{b}}}=\frac{\text{470}}{\text{63}\text{.}7}=7\text{.}\text{38}\\[/latex].

Discussion

This means that the biceps muscle is exerting a force 7.38 times the weight supported.

In the above example of the biceps muscle, the angle between the forearm and upper arm is 90°. If this angle changes, the force exerted by the biceps muscle also changes. In addition, the length of the biceps muscle changes. The force the biceps muscle can exert depends upon its length; it is smaller when it is shorter than when it is stretched.

Very large forces are also created in the joints. In the previous example, the downward force FE exerted by the humerus at the elbow joint equals 407 N, or 6.38 times the total weight supported. (The calculation of FE is straightforward and is left as an end-of-chapter problem.) Because muscles can contract, but not expand beyond their resting length, joints and muscles often exert forces that act in opposite directions and thus subtract. (In the above example, the upward force of the muscle minus the downward force of the joint equals the weight supported—that is, 470 N–407 N = 63 N, approximately equal to the weight supported.) Forces in muscles and joints are largest when their load is a long distance from the joint, as the book is in the previous example.

In racquet sports such as tennis the constant extension of the arm during game play creates large forces in this way. The mass times the lever arm of a tennis racquet is an important factor, and many players use the heaviest racquet they can handle. It is no wonder that joint deterioration and damage to the tendons in the elbow, such as “tennis elbow,” can result from repetitive motion, undue torques, and possibly poor racquet selection in such sports. Various tried techniques for holding and using a racquet or bat or stick not only increases sporting prowess but can minimize fatigue and long-term damage to the body. For example, tennis balls correctly hit at the “sweet spot” on the racquet will result in little vibration or impact force being felt in the racquet and the body—less torque as explained in Collisions of Extended Bodies in Two Dimensions. Twisting the hand to provide top spin on the ball or using an extended rigid elbow in a backhand stroke can also aggravate the tendons in the elbow.

Training coaches and physical therapists use the knowledge of relationships between forces and torques in the treatment of muscles and joints. In physical therapy, an exercise routine can apply a particular force and torque which can, over a period of time, revive muscles and joints. Some exercises are designed to be carried out under water, because this requires greater forces to be exerted, further strengthening muscles. However, connecting tissues in the limbs, such as tendons and cartilage as well as joints are sometimes damaged by the large forces they carry. Often, this is due to accidents, but heavily muscled athletes, such as weightlifters, can tear muscles and connecting tissue through effort alone.

The back is considerably more complicated than the arm or leg, with various muscles and joints between vertebrae, all having mechanical advantages less than 1. Back muscles must, therefore, exert very large forces, which are borne by the spinal column. Discs crushed by mere exertion are very common. The jaw is somewhat exceptional—the masseter muscles that close the jaw have a mechanical advantage greater than 1 for the back teeth, allowing us to exert very large forces with them. A cause of stress headaches is persistent clenching of teeth where the sustained large force translates into fatigue in muscles around the skull.

Figure 2 shows how bad posture causes back strain. In part (a), we see a person with good posture. Note that her upper body’s cg is directly above the pivot point in the hips, which in turn is directly above the base of support at her feet. Because of this, her upper body’s weight exerts no torque about the hips. The only force needed is a vertical force at the hips equal to the weight supported. No muscle action is required, since the bones are rigid and transmit this force from the floor. This is a position of unstable equilibrium, but only small forces are needed to bring the upper body back to vertical if it is slightly displaced. Bad posture is shown in part (b); we see that the upper body’s cg is in front of the pivot in the hips. This creates a clockwise torque around the hips that is counteracted by muscles in the lower back. These muscles must exert large forces, since they have typically small mechanical advantages. (In other words, the perpendicular lever arm for the muscles is much smaller than for the cg.) Poor posture can also cause muscle strain for people sitting at their desks using computers. Special chairs are available that allow the body’s CG to be more easily situated above the seat, to reduce back pain. Prolonged muscle action produces muscle strain. Note that the cg of the entire body is still directly above the base of support in part (b) of Figure 2. This is compulsory; otherwise the person would not be in equilibrium. We lean forward for the same reason when carrying a load on our backs, to the side when carrying a load in one arm, and backward when carrying a load in front of us, as seen in Figure 3.

What is the force of a muscle?

Figure 2. (a) good posture places the upper body’s cg over the pivots in the hips, eliminating the need for muscle action to balance the body. (b) Poor posture requires exertion by the back muscles to counteract the clockwise torque produced around the pivot by the upper body’s weight. The back muscles have a small effective perpendicular lever arm, rb⊥, and must therefore exert a large force Fb. Note that the legs lean backward to keep the cg of the entire body above the base of support in the feet.

You have probably been warned against lifting objects with your back. This action, even more than bad posture, can cause muscle strain and damage discs and vertebrae, since abnormally large forces are created in the back muscles and spine.

What is the force of a muscle?

Figure 3. People adjust their stance to maintain balance. (a) A father carrying his son piggyback leans forward to position their overall cg above the base of support at his feet. (b) A student carrying a shoulder bag leans to the side to keep the overall cg over his feet. (c) Another student carrying a load of books in her arms leans backward for the same reason.

Consider the person lifting a heavy box with his back, shown in Figure 4. (a) Calculate the magnitude of the force FB– in the back muscles that is needed to support the upper body plus the box and compare this with his weight. The mass of the upper body is 55.0 kg and the mass of the box is 30.0 kg. (b) Calculate the magnitude and direction of the force FV– exerted by the vertebrae on the spine at the indicated pivot point. Again, data in the figure may be taken to be accurate to three significant figures.

Strategy

By now, we sense that the second condition for equilibrium is a good place to start, and inspection of the known values confirms that it can be used to solve for FB– if the pivot is chosen to be at the hips. The torques created by wub and wbox– are clockwise, while that created by FB– is counterclockwise.

Solution for (a)

Using the perpendicular lever arms given in the figure, the second condition for equilibrium (net τ = 0) becomes

(0.350 m)(55.0 kg)(9.80 m/s2) + (0.500 m)(30.0 kg)(9.80 m/s2) = (0.0800 m)FB.

Solving for FB yields

FB = 4.20 × 103 N.

The ratio of the force the back muscles exert to the weight of the upper body plus its load is

[latex]\frac{{F}_{\text{B}}}{{w}_{\text{ub}}+{w}_{\text{box}}}=\frac{\text{4200 N}}{\text{833 N}}=\text{5.04}\\[/latex].

This force is considerably larger than it would be if the load were not present.

Solution for (b)

More important in terms of its damage potential is the force on the vertebrae FV. The first condition for equilibrium (net F = 0) can be used to find its magnitude and direction. Using y for vertical and x for horizontal, the condition for the net external forces along those axes to be zero

net Fy = 0 and Fx = 0

Starting with the vertical (y) components, this yields

[latex]{F}_{\text{V}y}-{w}_{\text{ub}}-{w}_{\text{box}}-{F}_{\text{B}}\sin{29.0}^{\circ}=0\\[/latex]

Thus,

[latex]\begin{array}{lll}{F}_{\text{V}y}& =& {w}_{\text{ub}}+{w}_{\text{box}}+{F}_{\text{B}}\sin{29.0}^{\circ}\ & =& \text{833 N}+\left(\text{4200 N}\right)\sin{29.0}^{\circ}\end{array}\\[/latex]

yielding

FVy = 2.87 × 103 N.

Similarly, for the horizontal (x) components,

[latex]{F}_{\text{V}x}-{F}_{\text{B}}\cos{29.0}^{\circ}=0\\[/latex]

yielding

FVx = 3.67 × 103 N.

The magnitude of FV is given by the Pythagorean theorem:

[latex]{{F}_{\text{V}}}=\sqrt{{{F}_{\text{V}x}}^{2}+{{F}_{\text{V}y}}^{2}}=\text{4.66}\times {10}^{3}\text{ N}\\[/latex].

The direction of FV is

[latex]\theta =\tan^{-1}\left(\frac{{F}_{\text{V}y}}{{F}_{\text{V}x}}\right)=38.0^{\circ}\\[/latex].

Note that the ratio of FV to the weight supported is

[latex]\frac{{F}_{\text{V}}}{{w}_{\text{ub}}+{w}_{\text{box}}}=\frac{\text{4660 N}}{\text{833 N}}=5.59\\[/latex].

Discussion

This force is about 5.6 times greater than it would be if the person were standing erect. The trouble with the back is not so much that the forces are large—because similar forces are created in our hips, knees, and ankles—but that our spines are relatively weak. Proper lifting, performed with the back erect and using the legs to raise the body and load, creates much smaller forces in the back—in this case, about 5.6 times smaller.

What is the force of a muscle?

Figure 4. This figure shows that large forces are exerted by the back muscles and experienced in the vertebrae when a person lifts with their back, since these muscles have small effective perpendicular lever arms. The data shown here are analyzed in the preceding example, Example 2.

What are the benefits of having most skeletal muscles attached so close to joints? One advantage is speed because small muscle contractions can produce large movements of limbs in a short period of time. Other advantages are flexibility and agility, made possible by the large numbers of joints and the ranges over which they function. For example, it is difficult to imagine a system with biceps muscles attached at the wrist that would be capable of the broad range of movement we vertebrates possess.

There are some interesting complexities in real systems of muscles, bones, and joints. For instance, the pivot point in many joints changes location as the joint is flexed, so that the perpendicular lever arms and the mechanical advantage of the system change, too. Thus the force the biceps muscle must exert to hold up a book varies as the forearm is flexed. Similar mechanisms operate in the legs, which explain, for example, why there is less leg strain when a bicycle seat is set at the proper height. The methods employed in this section give a reasonable description of real systems provided enough is known about the dimensions of the system. There are many other interesting examples of force and torque in the body—a few of these are the subject of end-of-chapter problems.

Section Summary

  • Statics plays an important part in understanding everyday strains in our muscles and bones.
  • Many lever systems in the body have a mechanical advantage of significantly less than one, as many of our muscles are attached close to joints.
  • Someone with good posture stands or sits in such as way that their center of gravity lies directly above the pivot point in their hips, thereby avoiding back strain and damage to disks.

1. Why are the forces exerted on the outside world by the limbs of our bodies usually much smaller than the forces exerted by muscles inside the body?

2. Explain why the forces in our joints are several times larger than the forces we exert on the outside world with our limbs. Can these forces be even greater than muscle forces?

3. Certain types of dinosaurs were bipedal (walked on two legs). What is a good reason that these creatures invariably had long tails if they had long necks?

4. Swimmers and athletes during competition need to go through certain postures at the beginning of the race. Consider the balance of the person and why start-offs are so important for races.

5. If the maximum force the biceps muscle can exert is 1000 N, can we pick up an object that weighs 1000 N? Explain your answer.

6. Suppose the biceps muscle was attached through tendons to the upper arm close to the elbow and the forearm near the wrist. What would be the advantages and disadvantages of this type of construction for the motion of the arm?

7. Explain one of the reasons why pregnant women often suffer from back strain late in their pregnancy.

1. Verify that the force in the elbow joint in Example 1: Muscles Exert Bigger Forces Than You Might Think (above) is 407 N, as stated in the text.

2. Two muscles in the back of the leg pull on the Achilles tendon as shown in Figure 5. What total force do they exert?

What is the force of a muscle?

Figure 5. The Achilles tendon of the posterior leg serves to attach plantaris, gastrocnemius, and soleus muscles to calcaneus bone.

3. The upper leg muscle (quadriceps) exerts a force of 1250 N, which is carried by a tendon over the kneecap (the patella) at the angles shown in Figure 6. Find the direction and magnitude of the force exerted by the kneecap on the upper leg bone (the femur).

What is the force of a muscle?

Figure 6. The knee joint works like a hinge to bend and straighten the lower leg. It permits a person to sit, stand, and pivot.

4. A device for exercising the upper leg muscle is shown in Figure 7, together with a schematic representation of an equivalent lever system. Calculate the force exerted by the upper leg muscle to lift the mass at a constant speed. Explicitly show how you follow the steps in the Problem-Solving Strategy for static equilibrium in Applications of Statistics, Including Problem-Solving Strategies.

What is the force of a muscle?

Figure 7. A mass is connected by pulleys and wires to the ankle in this exercise device.

5. A person working at a drafting board may hold her head as shown in Figure 8, requiring muscle action to support the head. The three major acting forces are shown. Calculate the direction and magnitude of the force supplied by the upper vertebrae FV to hold the head stationary, assuming that this force acts along a line through the center of mass as do the weight and muscle force.

What is the force of a muscle?

Figure 8.

6. We analyzed the biceps muscle example with the angle between forearm and upper arm set at 90º. Using the same numbers as in Example 1: Muscles Exert Bigger Forces Than You Might Think (above), find the force exerted by the biceps muscle when the angle is 120º and the forearm is in a downward position.

7. Even when the head is held erect, as in Figure 9, its center of mass is not directly over the principal point of support (the atlanto-occipital joint). The muscles at the back of the neck should therefore exert a force to keep the head erect. That is why your head falls forward when you fall asleep in the class. (a) Calculate the force exerted by these muscles using the information in the figure. (b) What is the force exerted by the pivot on the head?

What is the force of a muscle?

Figure 9. The center of mass of the head lies in front of its major point of support, requiring muscle action to hold the head erect. A simplified lever system is shown.

8. A 75-kg man stands on his toes by exerting an upward force through the Achilles tendon, as in Figure 10. (a) What is the force in the Achilles tendon if he stands on one foot? (b) Calculate the force at the pivot of the simplified lever system shown—that force is representative of forces in the ankle joint.

What is the force of a muscle?

Figure 10.

9. A father lifts his child as shown in Figure 11. What force should the upper leg muscle exert to lift the child at a constant speed?

What is the force of a muscle?

Figure 11. A child being lifted by a father’s lower leg.

10. Unlike most of the other muscles in our bodies, the masseter muscle in the jaw, as illustrated in Figure 12, is attached relatively far from the joint, enabling large forces to be exerted by the back teeth. (a) Using the information in the figure, calculate the force exerted by the lower teeth on the bullet. (b) Calculate the force on the joint.

What is the force of a muscle?

Figure 12. A person clenching a bullet between his teeth.

11. Integrated Concepts Suppose we replace the 4.0-kg book in Exercise 7 of the biceps muscle with an elastic exercise rope that obeys Hooke’s Law. Assume its force constant k = 600 N/m (a) How much is the rope stretched (past equilibrium) to provide the same force FB as in this example? Assume the rope is held in the hand at the same location as the book. (b) What force is on the biceps muscle if the exercise rope is pulled straight up so that the forearm makes an angle of 25º with the horizontal? Assume the biceps muscle is still perpendicular to the forearm.

12. (a) What force should the woman in Figure 13 exert on the floor with each hand to do a push-up? Assume that she moves up at a constant speed. (b) The triceps muscle at the back of her upper arm has an effective lever arm of 1.75 cm, and she exerts force on the floor at a horizontal distance of 20.0 cm from the elbow joint. Calculate the magnitude of the force in each triceps muscle, and compare it to her weight. (c) How much work does she do if her center of mass rises 0.240 m? (d) What is her useful power output if she does 25 pushups in one minute?

What is the force of a muscle?

Figure 13.

13. You have just planted a sturdy 2-m-tall palm tree in your front lawn for your mother’s birthday. Your brother kicks a 500 g ball, which hits the top of the tree at a speed of 5 m/s and stays in contact with it for 10 ms. The ball falls to the ground near the base of the tree and the recoil of the tree is minimal. (a) What is the force on the tree? (b) The length of the sturdy section of the root is only 20 cm. Furthermore, the soil around the roots is loose and we can assume that an effective force is applied at the tip of the 20 cm length. What is the effective force exerted by the end of the tip of the root to keep the tree from toppling? Assume the tree will be uprooted rather than bend. (c) What could you have done to ensure that the tree does not uproot easily?

14. Unreasonable Results Suppose two children are using a uniform seesaw that is 3.00 m long and has its center of mass over the pivot. The first child has a mass of 30.0 kg and sits 1.40 m from the pivot. (a) Calculate where the second 18.0 kg child must sit to balance the seesaw. (b) What is unreasonable about the result? (c) Which premise is unreasonable, or which premises are inconsistent?

15. Construct Your Own Problem Consider a method for measuring the mass of a person’s arm in anatomical studies. The subject lies on her back, extends her relaxed arm to the side and two scales are placed below the arm. One is placed under the elbow and the other under the back of her hand. Construct a problem in which you calculate the mass of the arm and find its center of mass based on the scale readings and the distances of the scales from the shoulder joint. You must include a free body diagram of the arm to direct the analysis. Consider changing the position of the scale under the hand to provide more information, if needed. You may wish to consult references to obtain reasonable mass values.

1. [latex]\begin{array}{lll}{F}_{\text{B}}&=&\text{470 N; }{r}_{1}=\text{4.00 cm; }{w}_{\text{a}}=\text{2.50 kg; }{r}_{2}=\text{16.0 cm; }{w}_{\text{b}}=\text{4.00 kg; }{r}_{3}=\text{38.0 cm}\\ {F}_{\text{E}}& =& {w}_{\text{a}}\left(\frac{{r}_{2}}{{r}_{1}}-1\right)+{w}_{\text{b}}\left(\frac{{r}_{3}}{{r}_{1}}-1\right)\\ & =& \left(\text{2.50 kg}\right)\left(9.80\text{m}/{\text{s}}^{2}\right)\left(\frac{\text{16.0 cm}}{\text{4.0 cm}}-1\right)\\ & & +\left(\text{4.00 kg}\right)\left(9.80\text{m}/{\text{s}}^{2}\right)\left(\frac{\text{38.0 cm}}{\text{4.00 cm}}-1\right)\\ & =& \text{407 N}\end{array}\\[/latex]

3. 1.1 x 103 N, θ 190º ccw from positive x–axis

5. F97 N, θ 59º

7. (a) 25 N downward (b) 75 N upward

9. (a) FA = 2.21 × 103 N upward (b) FB = 2.94 × 103 N  downward

11. (a) Fteeth on bullet = 1.2 × 102 N upward (b) FJ = 84 N downward

13. (a) 147 N downward (b) 1680 N, 3.4 times her weight (c) 118 J (d) 49.0 W

15.  (a) [latex]{\bar{x}}_{2}=\text{2.33 m}\\[/latex] (b) The seesaw is 3.0 m long, and hence, there is only 1.50 m of board on the other side of the pivot. The second child is off the board. (c) The position of the first child must be shortened, i.e. brought closer to the pivot.