What is the polymer of nucleic proteins?

1. Eickbush TH, Malik HS. In: Mobile DNA II. Craig NL, Craigie R, Gellert M, Lambowitz AM, editors. Washington DC: ASM Press; 2002. pp. 1111–1144. [Google Scholar]

2. Malik HS, Burke WD, Eickbush TH. The age and evolution of non-LTR retrotransposable elements. Mol. Biol. Evol. 1999;16:793–805. [PubMed] [Google Scholar]

3. IHGS-Consortium. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921. [PubMed] [Google Scholar]

4. Boissinot S, Chevret P, Furano AV. L1 (LINE-1) retrotransposon evolution and amplification in recent human history. Mol. Biol. Evol. 2000;17:915–928. [PubMed] [Google Scholar]

5. Boissinot S, Entezam A, Young L, Munson PJ, Furano AV. The insertional history of an active family of L1 retrotransposons in humans. Genome Res. 2004;14:1221–1231. [PMC free article] [PubMed] [Google Scholar]

6. Boissinot S, Davis J, Entezam A, Petrov D, Furano AV. Fitness cost of LINE-1 (L1) activity in humans. Proc. Natl Acad. Sci. USA. 2006;103:9590–9594. [PMC free article] [PubMed] [Google Scholar]

7. Beck CR, Collier P, Macfarlane C, Malig M, Kidd JM, Eichler EE, Badge RM, Moran JV. LINE-1 retrotransposition activity in human genomes. Cell. 2010;141:1159–1170. [PMC free article] [PubMed] [Google Scholar]

8. Ewing AD, Kazazian HH. High-throughput sequencing reveals extensive variation in human-specific L1 content in individual human genomes. Genome Res. 2010;20:1262–1272. [PMC free article] [PubMed] [Google Scholar]

9. Huang CRL, Schneider AM, Lu Y, Niranjan T, Shen P, Robinson MA, Steranka JP, Valle D, Civin CI, Wang T, et al. Mobile interspersed repeats are major structural variants in the human genome. Cell. 2010;141:1171–1182. [PMC free article] [PubMed] [Google Scholar]

10. Iskow RC, McCabe MT, Mills RE, Torene S, Pittard WS, Neuwald AF, Van Meir EG, Vertino PM, Devine SE. Natural mutagenesis of human genomes by endogenous retrotransposons. Cell. 2010;141:1253–1261. [PMC free article] [PubMed] [Google Scholar]

11. Singer T, McConnell MJ, Marchetto MC, Coufal NG, Gage FH. LINE-1 retrotransposons: mediators of somatic variation in neuronal genomes? Trends Neurosci. 2010;33:345–354. [PMC free article] [PubMed] [Google Scholar]

12. Martin SL. Nucleic acid chaperone properties of ORF1p from the non-LTR retrotransposon, LINE-1. RNA Biol. 2010;7:67–72. [PMC free article] [PubMed] [Google Scholar]

13. Moran JV, Holmes SE, Naas TP, DeBerardinis RJ, Boeke JD, Kazazian HH., Jr High frequency retrotransposition in cultured mammalian cells. Cell. 1996;87:917–927. [PubMed] [Google Scholar]

14. Mathias SL, Scott AF, Kazazian HHJ, Boeke JD, Gabriel A. Reverse transcriptase encoded by a human transposable element. Science. 1991;254:1808–1810. [PubMed] [Google Scholar]

15. Feng Q, Moran JV, Kazazian HH, Jr, Boeke JD. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell. 1996;87:905–916. [PubMed] [Google Scholar]

16. Luan DD, Korman MH, Jakubczak JL, Eickbush TH. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell. 1993;72:595–605. [PubMed] [Google Scholar]

17. Luan DD, Eickbush TH. RNA template requirements for target DNA-primed reverse transcription by the R2 retransposable element. Mol. Cell. Biol. 1995;15:3882–3891. [PMC free article] [PubMed] [Google Scholar]

18. Bibillo A, Eickbush TH. The reverse transcriptase of the R2 non-LTR retrotransposon: continuous synthesis of cDNA on non-continuous RNA templates. J. Mol. Biol. 2002;316:459–473. [PubMed] [Google Scholar]

19. Cost GJ, Feng Q, Jacquier A, Boeke JD. Human L1 element target-primed reverse transcription in vitro. EMBO J. 2002;21:5899–5910. [PMC free article] [PubMed] [Google Scholar]

20. Kulpa DA, Moran JV. Ribonucleoprotein particle formation is necessary but not sufficient for LINE-1 retrotransposition. Hum. Mol. Genet. 2005;14:3237–3248. [PubMed] [Google Scholar]

21. Kulpa DA, Moran JV. Cis-preferential LINE-1 reverse transcriptase activity in ribonucleoprotein particles. Nat. Struct. Mol. Biol. 2006;13:655–660. [PubMed] [Google Scholar]

22. Martin SL. Ribonucleoprotein particles with LINE-1 RNA in mouse embryonal carcinoma cells. Mol. Cell. Biol. 1991;11:4804–4807. [PMC free article] [PubMed] [Google Scholar]

23. Hohjoh H, Singer MF. Cytoplasmic ribonucleoprotein complexes containing human LINE-1 protein and RNA. EMBO J. 1996;15:630–639. [PMC free article] [PubMed] [Google Scholar]

24. Martin SL. The ORF1 protein encoded by LINE-1: structure and function during L1 retrotransposition. J. Biomed. Biotechnol. 2006;2006 ID#45621. [PMC free article] [PubMed] [Google Scholar]

25. Khazina E, Weichenrieder O. Non-LTR retrotransposons encode noncanonical RRM domains in their first open reading frame. Proc. Natl Acad. Sci. USA. 2009;106:731–736. [PMC free article] [PubMed] [Google Scholar]

26. Martin SL, Branciforte D, Keller D, Bain DL. Trimeric structure for an essential protein in L1 retrotransposition. Proc. Natl Acad. Sci. USA. 2003;100:13815–13820. [PMC free article] [PubMed] [Google Scholar]

27. Martin SL, Li J, Weisz JA. Deletion analysis defines distinct functional domains for protein-protein and nucleic acid interactions in the ORF1 protein of mouse LINE-1. J. Mol. Biol. 2000;304:11–20. [PubMed] [Google Scholar]

28. Martin SL, Cruceanu M, Branciforte D, Wai-Lun Li P, Kwok SC, Hodges RS, Williams MC. LINE-1 Retrotransposition requires the nucleic acid chaperone activity of the ORF1 protein. J. Mol. Biol. 2005;348:549–561. [PubMed] [Google Scholar]

29. Basame S, Wai-lun Li P, Howard G, Branciforte D, Keller D, Martin SL. Spatial assembly and RNA binding stoichiometry of a LINE-1 protein essential for retrotransposition. J. Mol. Biol. 2006;357:351–357. [PubMed] [Google Scholar]

30. Januszyk K, Li PW-l, Villareal V, Branciforte D, Wu H, Xie Y, Feigon J, Loo JA, Martin SL, Clubb RT. Identification and solution structure of a highly conserved C-terminal domain within ORF1p required for retrotransposition of long interspersed nuclear element-1. J. Biol. Chem. 2007;282:24893–24904. [PubMed] [Google Scholar]

31. Kolosha VO, Martin SL. High-affinity, non-sequence-specific RNA binding by the open reading frame 1 (ORF1) protein from long interspersed nuclear element 1 (LINE-1) J. Biol. Chem. 2003;278:8112–8117. [PubMed] [Google Scholar]

32. Martin SL, Bushman D, Wang F, Li PWL, Walker A, Cummiskey J, Branciforte D, Williams MC. A single amino acid substitution in ORF1 dramatically decreases L1 retrotransposition and provides insight into nucleic acid chaperone activity. Nucleic Acids Res. 2008;36:5845–5854. [PMC free article] [PubMed] [Google Scholar]

33. Furano AV. The biological properties and evolutionary dynamics of mammalian LINE-1 retrotransposons. Prog. Nucleic Acids Res. Mol. Biol. 2000;64:255–294. [PubMed] [Google Scholar]

34. Demers GW, Matunis MJ, Hardison RC. The L1 family of long interspersed repetitive DNA in rabbits: sequence, copy number, conserved open reading frames, and similarity to keratin. J. Mol. Evol. 1989;29:3–19. [PMC free article] [PubMed] [Google Scholar]

35. Boissinot S, Furano AV. The recent evolution of human L1 retrotransposons. Cytogenet. Genome Res. 2005;110:402–406. [PubMed] [Google Scholar]

36. Kolosha VO, Martin SL. In vitro properties of the first ORF protein from mouse LINE-1 support its role in ribonucleoprotein particle formation during retrotransposition. Proc. Natl Acad. Sci. USA. 1997;94:10155–10160. [PMC free article] [PubMed] [Google Scholar]

37. Wei W, Gilbert N, Ooi SL, Lawler JF, Ostertag EM, Kazazian HH, Boeke JD, Moran JV. Human L1 retrotransposition: cis preference versus trans complementation. Mol. Cell. Biol. 2001;21:1429–1439. [PMC free article] [PubMed] [Google Scholar]

38. Sassaman DM, Dombroski BA, Moran JV, Kimberland ML, Naas TP, DeBerardinis RJ, Gabriel A, Swergold GD, Kazazian HH., Jr Many human L1 elements are capable of retrotransposition. Nat. Genet. 1997;16:37–43. [PubMed] [Google Scholar]

39. Wong I, Lohman TM. A double-filter method for nitrocellulose-filter binding: application to protein–nucleic acid interactions. Proc. Natl Acad. Sci. USA. 1993;90:5428–5432. [PMC free article] [PubMed] [Google Scholar]

40. DeLean A, Munson P, Rodbard D. Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay, and physiological dose-response curves. Am. J. Physiol.– Endocrinol. Metab. 1978;235:E97–E102. [PubMed] [Google Scholar]

41. Wolf E, Kim PS, Berger B. MultiCoil: a program for predicting two-and three-stranded coiled coils. Protein Sci. 1997;6:1179–1189. [PMC free article] [PubMed] [Google Scholar]

42. Heus H, Hilbers C. Structures of non-canonical tanemd base pairs in RNA helices: review. Nucleosides Nucleotides Nucleic Acids. 2003;22:559–571. [PubMed] [Google Scholar]

43. Cléry A, Blatter M, Allain FHT. RNA recognition motifs: boring? Not quite. Curr. Opin. Struct. Biol. 2008;18:290–298. [PubMed] [Google Scholar]

44. Kielkopf CL, Lücke S, Green MR. U2AF homology motifs: protein recognition in the RRM world. Genes Dev. 2004;18:1513–1526. [PMC free article] [PubMed] [Google Scholar]

45. Martin SL, Bushman FD. Nucleic acid chaperone activity of the ORF1 protein from the mouse LINE-1 retrotransposon. Mol. Cell. Biol. 2001;21:467–475. [PMC free article] [PubMed] [Google Scholar]

46. Burkhard P, Ivaninskii S, Lustig A. Improving coiled-coil stability by optimizing ionic interactions. J. Mol. Biol. 2002;318:901–910. [PubMed] [Google Scholar]

47. Doucet AlJ, Hulme AE, Sahinovic E, Kulpa DA, Moldovan JB, Kopera HC, Athanikar JN, Hasnaoui M, Bucheton A, Moran JV, et al. Characterization of LINE-1 ribonucleoprotein particles. PLoS Genet. 2010;6:e1001150. [PMC free article] [PubMed] [Google Scholar]

48. Goodier JL, Zhang L, Vetter MR, Kazazian HH., Jr LINE-1 ORF1 protein localizes in stress granules with other RNA-binding proteins, including components of RNA interference RNA-induced silencing complex. Mol. Cell. Biol. 2007;27:6469–6483. [PMC free article] [PubMed] [Google Scholar]

49. Kroutter EN, Belancio VP, Wagstaff BJ, Roy-Engel AM. The RNA polymerase dictates ORF1 requirement and timing of LINE and SINE retrotransposition. PLoS Genet. 2009;5:e1000458. [PMC free article] [PubMed] [Google Scholar]

50. Abramoff MD, Magelhaes PJ, Ram SJ. Image processing with ImageJ. Biophotonics International. 2004;11:36–42. [Google Scholar]


Page 2

What is the polymer of nucleic proteins?

Schematic representation of ORF1p. The top diagram shows the location of the major domains in the ORF1p of an active L1Pa1 element (the L1.3 member of the Ta-1 subfamily, respective refs 4 and 38). The amino acids corresponding to the predicted coiled-coil domain (41), the RNA recognition motif (RRM, ref. 25), and the C-terminal domain (CTD, ref. 30) are shown in Supplementary Figure S1. The arrow indicates the start of the N-terminal deletion mutant, M128p (see text and Supplementary Data). The middle diagram depicts the trimer modeled on the relative sizes of the N-terminal region, coiled-coil domain, and C-terminal half of the mouse protein as revealed by atomic force microscopy (26). The areas of the ovals corresponding to the N-terminal region and C-terminal half are proportional to their masses. The bottom diagram depicts the M128p protein monomer.

  • What is the polymer of nucleic proteins?
  • What is the polymer of nucleic proteins?
  • What is the polymer of nucleic proteins?
  • What is the polymer of nucleic proteins?
  • What is the polymer of nucleic proteins?
  • What is the polymer of nucleic proteins?
  • What is the polymer of nucleic proteins?
  • What is the polymer of nucleic proteins?
  • What is the polymer of nucleic proteins?

Click on the image to see a larger version.