What is the term that refers to the connective tissue layer of the skin beneath the epidermis?

What is the term that refers to the connective tissue layer of the skin beneath the epidermis?

The skin is the body’s largest organ. It has two main layers which serve a number of important functions. These layers are called the epidermis (the outer layer) and the dermis (the middle layer). The subcutaneous tissue lies below the skin.

Functions of the Skin

The skin serves many important functions, which include:

  • Protection: the skin acts as a barrier to prevent bacteria, viruses and fungi from entering the body to cause an infection. People who have suffered from severe burns are at a greatly increased risk of infection because the integrity of this vital barrier is compromised. It helps shield the delicate tissues underneath from mechanical and other injuries.
  • Excretion: the skin is a site through which we can excrete urea and other wastes via the sweat (the skin is not as important as the kidneys in terms of excretion)
  • The skin is an important part of the sensory system. It contains important receptors which are specialised to detect touch, pressure, heat, cold, vibration and pain
  • The skin is also very important for the control of our body temperature. It is the site of sweating, which helps to remove heat from the body. The skin also has a lot of blood vessels. These blood vessels constrict (become narrower) when the body temperature drops to help conserve heat, and dilate (become wider and increase blood flow) when body temperature increases to help release more heat via the skin
  • The skin helps prevent us losing fluid as it is quite waterproof
  • It guards against excessive exposure to the ultraviolet rays of the sun by producing a protective pigmentation called melanin
  • The skin is also a site of storage of fats
  • The skin is involved in the synthesis of vitamin D, an essential vitamin which is obtained from sunlight

The Epidermis

The epidermis is the outer layer of the skin. It itself has a number of different layers. It is a waterproof protective layer made up of many different cells. From the bottom upwards, the layers of the epidermis are:

  1. Stratum Basale: this is the deepest layer of the epidermis and is only one layer of cells thick; although it may be 2-3 layers thick in areas of skin without hair. It is made up of cells called keratinocytes, which are like the stem cells of the skin. These cells divide into 2 and ascend superficially to the next layer of the skin, called the stratum spinosum. It also has melanocytes, which are pigment cells that produce melanin, which gives the skin its colour. Touch receptors, called Merkel’s cells are responsible for detecting the sensation of light touch and two-point discrimination. Another important cell type found in the stratum basale is the Langerhan’s cells, which are a part of the immune system. They are antigen-presenting cells, which mean that they detect foreign bacteria, viruses and fungi and present these to cells of the immune system to mount an immune response
  2. Stratum Spinosum: this is the layer where the cells start to become filled with keratin. This layer is sometimes called the prickle cell layer because the cells look ‘spiky’ due to connections between adjacent cells
  3. Stratum granulosum: this is a thin layer. The cells in this layer are filled with granules that are needed to bind filaments of keratin together within the cell
  4. Stratum lucidum: this layer is only present in areas of thick skin, namely, the palms of the hands and the soles of the feet. It is a layer that is 3-5 cells thick, containing flat keratinocytes.
  5. Stratum Corneum: this is the outer layer consisting of keratinised dead squamous skin cells. It acts as a barrier to prevent the entry of potentially dangerous bacteria, fungi and viruses, as well as to water-proof the skin. It takes about 2 weeks for the skin cells to migrate from the stratum basale to the stratum corneum. Eventually, skin cells are shed from the stratum corneum into the environment. This is the thickest layer of the epidermis, and can be up to 30 cells thick.

The epidermis is avascular – it has no blood vessels directly in the layer. Veins and arteries are found just deep to the epidermis. Nutrients and oxygen diffuse into this layer from the bloodstream.

Dermis

What is the term that refers to the connective tissue layer of the skin beneath the epidermis?
The dermis is mainly made up of connective tissue. It is also organised into regions. It is connected to the epidermis by a basement membrane. The connection between the dermis and the epidermis is tight, and looking under the microscope, there are finger-like extensions from the top layer of the dermis extending upwards to the epidermis. The dermis contains a lot of collagen, a type of tissue that gives the dermis strength, and also elastin, which gives elastic properties to the dermis.

The top layer of the dermis is called the papillary dermis, so named for the finger-like projections (papillae) which project upwards to the epidermis. It is very vascular, containing lots of blood vessels which supply the dermis and indirectly, the epidermis. It also contains a special type of receptor, called Meissner’s corpuscles. Meissner’s corpuscles are specialised nerve endings which detect touch and vibration. Within the papillary dermis, the main type of connective tissue is called loose connective tissue. The loose connective tissue here is strong enough to hold the dermis, epidermis and blood vessels together. Since it is not very rigid, it is also flexible and helps to cushion the skin; providing a healthy medium of both strength and elasticity.

The deeper layer of the dermis is called the reticular dermis. It is much thicker than the papillary layer and contains a number of important structures. The main type of connective tissue in the dermis is dense, irregular connective tissue which is much stronger than the loose connective tissue in the papillary dermis. The reticular dermis provides most of the overall strength of the skin. Also located in the reticular dermis are the sweat glands and hair follicles. The sweat glands have ducts which open up onto the surface of the skin. In the reticular dermis, there is another type of touch receptor, called Pacinian Corpuscles. These corpuscles are involved in the detection of deep touch and vibrations. The reticular dermis also contains larger blood vessels than those found in the papillary dermis.

Subcutaneous Tissue (Hypodermis)

The hypodermis is under the dermis. It contains a lot of adipose (fatty) tissue, as well as macrophages (cells of the immune system) and collagen. It also contains blood vessels and nerves. Due to the number of blood vessels, the hypodermis is the layer of the skin that insulin and other therapeutic drugs are injected into to increase absorption. The main function of the hypodermis is to store fat – up to half of the body’s fat is stored in the hypodermis. The fat in this layer is important to provide insulation to help keep the body warm and it is also involved in shock absorption and energy storage.

If you have any questions on this topic or others you may Contact us today.

We use cookies to enhance your experience. By continuing to browse this site you agree to our use of cookies. More info.

Skin is the largest organ in the body and covers the body's entire external surface. It is made up of three layers, the epidermis, dermis, and the hypodermis, all three of which vary significantly in their anatomy and function. The skin's structure is made up of an intricate network which serves as the body’s initial barrier against pathogens, UV light, and chemicals, and mechanical injury. It also regulates temperature and the amount of water released into the environment. This article discusses the relevant anatomical structures of the skin’s epidermal layer, its structure, function, embryology, vascular supply, innervation, surgical considerations, and clinical relevance.

Skin Thickness

The thickness of each layer of the skin varies depending on body region and categorized based on the thickness of the epidermal and dermal layers. Hairless skin found in the palms of the hands and soles of the feet is thickest because the epidermis contains an extra layer, the stratum lucidum. The upper back is considered thickest based on the thickness of the dermis, but it is considered “thin skin” histologically because the epidermal thickness lacks the stratum lucidum layer and is thinner than hairless skin.

Layers of Epidermis

The layers of the epidermis include the stratum basale (the deepest portion of the epidermis), stratum spinosum, stratum granulosum, stratum lucidum, and stratum corneum (the most superficial portion of the epidermis).

Stratum basale, also known as stratum germinativum, is the deepest layer, separated from the dermis by the basement membrane (basal lamina) and attached to the basement membrane by hemidesmosomes. The cells found in this layer are cuboidal to columnar mitotically active stem cells that are constantly producing keratinocytes. This layer also contains melanocytes.

Stratum spinosum, 8-10 cell layers, also known as the prickle cell layer contains irregular, polyhedral cells with cytoplasmic processes, sometimes called “spines”, that extend outward and contact neighboring cells by desmosomes. Dendritic cells can be found in this layer.

Stratum granulosum, 3-5 cell layers, contains diamond shaped cells with keratohyalin granules and lamellar granules. Keratohyalin granules contain keratin precursors that eventually aggregate, crosslink, and form bundles. The lamellar granules contain the glycolipids that get secreted to the surface of the cells and function as a glue, keeping the cells stuck together.

Stratum lucidum, 2-3 cell layers, present in thicker skin found in the palms and soles, is a thin clear layer consisting of eleidin which is a transformation product of keratohyalin.

Stratum corneum, 20-30 cell layers, is the uppermost layer, made up of keratin and horny scales made up of dead keratinocytes, known as anucleate squamous cells. This is the layer which varies most in thickness, especially in callused skin. Within this layer, the dead keratinocytes secrete defensins which are part of our first immune defense.

Cells of the Epidermis

  • Keratinocytes

  • Melanocytes

  • Langerhans’ cells

  • Merkel’s cell

Keratinocytes

Keratinocytes are the predominant cell type of epidermis and originate in the basal layer, produce keratin, and are responsible for the formation of the epidermal water barrier by making and secreting lipids. Keratinocytes also regulate calcium absorption by the activation of cholesterol precursors by UVB light to form vitamin D.

Melanocytes

Melanocytes are derived from neural crest cells and primarily produce melanin, which is responsible for the pigment of the skin. They are found between cells of stratum basale and produce melanin. UVB light stimulates melanin secretion which is protective against UV radiation, acting as a built-in sunscreen. Melanin is produced during the conversion of tyrosine to DOPA by the enzyme tyrosinase. Melanin then travels from cell to cell by a process that relies on the long processes extending from the melanocytes to the neighboring epidermal cells. Melanin granules from melanocytes are transferred via the long processes to the cytoplasm of basal keratinocyte. Melanin transferred to neighboring keratinocytes by “pigment donation”; involves phagocytosis of tips of melanocyte processes by keratinocytes.

Langerhans’ Cells

Langerhans cells, dendritic cells, are the skins first line defenders and play a significant role in antigen presentation. These cells need special stains to visualize, primarily found in the stratum spinosum. These cells are the mesenchymal origin, derived from CD34 positive stem cells of bone marrow and are part of the mononuclear phagocytic system. They contain Birbeck granules, tennis racket shaped cytoplasmic organelles. These cells express both MHC I and MHC II molecules, uptake antigens in skin and transport to the lymph node.

Merkel Cells

Merkel cells are oval-shaped modified epidermal cells found in stratum basale, directly above the basement membrane. These cells serve a sensory function as mechanoreceptors for light touch, and are most populous in fingertips, though also found in the palms, soles, oral, and genital mucosa. They are bound to adjoining keratinocytes by desmosomes and contain intermediate keratin filaments and their membranes interact with free nerve endings in the skin.

Dermis

The dermis is connected to the epidermis at the level of the basement membrane and consists of two layers, of connective tissue, the papillary and reticular layers which merge together without clear demarcation. The papillary layer is the upper layer, thinner, composed of loose connective tissue and contacts epidermis. The reticular layer is the deeper layer, thicker, less cellular, and consists of dense connective tissue/ bundles of collagen fibers. The dermis houses the sweat glands, hair, hair follicles, muscles, sensory neurons, and blood vessels.

Hypodermis

The hypodermis is deep to the dermis and is also called subcutaneous fascia. It is the deepest layer of skin and contains adipose lobules along with some skin appendages like the hair follicles, sensory neurons, and blood vessels.

The skin has many functions. It serves as a barrier to water, invasion by microorganisms, mechanical and chemical trauma, and damage from UV light. The epidermal water barrier established by the cell envelop, a layer of insoluble proteins on the inner surface of the plasma membrane. It is formed by cross-linking of small proline-rich proteins and larger proteins like cystatin, desmoplakin, filaggrin and contributes to strong mechanics of barrier. And the lipid envelope, a lipid/hydrophobic layer attached to the outer surface of the plasma membrane. As keratinocytes in stratum spinosum produce keratohyalin granules, they also produce lamellar bodies (containing a mixture of glycosphingolipids, phospholipids, and ceramides) assembled within Golgi.  Lamellar bodies’ contents are then secreted by exocytosis into extracellular spaces between the stratum granulosum and corneum. Skin is the first site of immunological defense by the action of the Langerhans cells in the epidermis which are dendritic epidermal T lymphocytes and part of the adaptive immune system. The skin preserves the bodies homeostasis by regulating temperature and water loss, while also serving both endocrine and exocrine functions. The endocrine functions include the production of vitamin D in the keratinocytes which are responsible for converting 7-dehydrocholesterol in the epidermis to vitamin D, with the assistance of UV light from the sun. The keratinocytes express the vitamin D receptor (VDR) and also contain the enzymes needed to convert vitamin D to its active form of 1, 25 dihydroxy vitamin D. The significance of the VDR is that stimulation of it plays a role in the proliferation of the stratum basale and differentiation of keratinocytes as they move upwards in the epidermis. The exocrine functions of the skin are by way of the sweat and sebaceous glands. Another important role of the skin is a sensation to touch, heat, cold, and pain by the actions of the nociceptors. The general appearance, turgor, and other qualities also give insight into the general health of the body. [7][8][9][10] 

The epidermis is derived from ectodermal tissue. The dermis and hypodermis are derived from mesodermal tissue from somites. The mesoderm is also responsible for the formation of Langerhans cells. Neural crest cells, responsible for specialized sensory nerve endings and melanocyte formation migrate into the epidermis during epidermal development. [11][12]

Blood vessels and lymphatic vessels are found in the dermal layer of the skin. Blood supply to the skin is an arrangement of two plexuses, the first lies between the papillary and reticular layers of the dermis and the second lie between the dermis and subcutaneous tissues. Supply to the epidermis is by way of the superficial arteriovenous plexus (subepidermal/papillary plexus). These vessels are important for temperature regulation. The mechanism by which the body regulates temperature through the skin is very effective and works by increased blood flow to the skin, transferring heat from the body to the environment. The changes in blood flow are controlled by the autonomic nervous system, sympathetic stimulation resulting in vasoconstriction (heat retention) and while vasodilation results in heat loss. Vasodilation of the blood vessels is the response to increased body temperature and is the result of inhibition of the sympathetic centers in the posterior hypothalamus whereas decreased body temperature will cause vasoconstriction of skin blood vessels. [13] [14]

Nerves of the skin include both somatic and autonomic nerves. The somatic sensory system is responsible for pain (nociceptors), temperature, light touch, discriminative touch, vibration, pressure, and proprioception medicated primarily by specialized cutaneous receptors/end organs including Merkel disks, Pacinian corpuscles, Meissner’s corpuscles, and Ruffini corpuscles. The autonomic innervation is responsible for the control of the tone of the vasculature, pilomotor stimulation at the hair root, and sweating. The free nerve endings extend into the epidermis and sense pain, heat, and cold. They are most numerous in the stratum granulosum layer and surround most hair follicles. Merkel disks sense light touch and reach the stratum basale layer. The other nerve endings are found in the deeper portions of the skin and include the Pacinian corpuscle which senses deep pressure, Meissner’s corpuscle which senses low-frequency stimulation at the level of the dermal papillae, and Ruffini corpuscles which sense pressure. [15][16][17]

The arrector pili muscles are bundles of smooth muscle fibers that attach to the connective tissue sheath of hair follicles. When the muscles contract, they pull the hair follicle outward resulting in the hair erecting up but also compresses the sebaceous glands, resulting in the secretion of their contents. Hair does not exit perpendicularly, but instead at an angle. This erection of hair also produces goosebumps, the bumpy appearance of the skin. [18]

Skin is continuously shedding and desquamating and varies slightly depending on the body region. There are more layers of cells in thicker hairless skin with an additional layer, known as the stratum lucidum. Overall, the process of cell division, desquamation, and shedding go as follows:

  1. Cell division occurs in stratum basale/germinativum. One cell remains, another cell is pushed toward the surface. Basal cells begin synthesis of tonofilaments (composed of keratin) which are grouped into bundles (tonofibrils).

  2. Cells are pushed into stratum spinosum. In the upper part of the spinous layer, cells begin to produce keratohyalin granules having intermediate-associated proteins, filaggrin, and trichohyalin; helps aggregate keratin filaments and conversion of granular cells to cornified cells, i.e. keratinization. Cells also produce lamellar bodies.

  3. Cells are pushed into stratum granulosum and become flattened and diamond shaped. The cells accumulate keratohyalin granules mixed between tonofibrils.

  4. Cells continue to stratum corneum where they flatten and lose organelles and nuclei.  The keratohyalin granules turn tonofibrils into a homogenous keratin matrix.

  5. Finally, cornified cells reach the surface and are desquamated via a break-down of desmosomes. Proteinase activity of KLK (kallikrein-related serine peptidase) is triggered by lowered pH near the surface.[19][20]

Langer’s Lines, also known as cleavage lines, are topological lines used to define the tension of the skin, corresponding to the alignment of collagen and elastic fibers in the reticular dermis. Surgical incisions made along these lines, less scarring will occur. [21]

There are numerous clinically significant aspects of the skin, including the dermatomes of the skin, skin segments divided based on the afferent nerves they are supplied by which are numbered according to the level of spinal vertebral from which they arise. There are seven cervical, twelve thoracic, five lumbar, and five sacral. Certain diseases like shingles, caused by varicella-zoster infection, have pain sensation and eruptive rashes that involve a dermatomal distribution. Dermatomes are useful in the diagnosis of vertebral spinal injury levels. Aside from the dermatomes, the cells of the epidermis are susceptible to neoplastic changes resulting in various cancer types. Some autoimmune and immunological diseases target the desmosomes and hemidesmosomes founds in the epidermis. Certain infections can also disrupt the integrity of the epidermis along with drug reactions that present variably as well.

Squamous cell carcinoma is cancer that arises from mutated keratinocytes, usually due to UV damage in individuals with Type I or II skin types (light skin, blue or green eyes, red or blonde hair, burn and never tan) and often appear as scaly, flaky, thick red patches that may bleed or even appear wart-like. This type of skin cancer can metastasize. Squamous cell carcinoma may arise from actinic keratosis, which is also caused by sun damage to the epidermal layer of skin and may have cutaneous horns. Basal cell carcinoma is a cancer of the basal layers of the epidermis and is much less likely to metastasize. This type of skin cancer is more common in sun-exposed areas and often appear are pearly papules on the face, with telangiectasias and ulcerate easily. Melanomas are cancers of the melanocytes and have a high metastatic potential, significantly mediated by the depth of the lesion. Melanomas can be found anywhere on the body, are usually irregularly pigmented but can be amelanotic. Langerhans Cell Histiocytosis is a type of cancer where Langerhans cells accumulate in the body and result in the formation of granulomas, often in the bones, resulting in bone pain. These granulomas can also appear in the skin like rashes, erythematous papules or blisters. An interesting association with this condition is the effect of the pituitary gland, which can be affected and individuals may present with diabetes insipidus, infertility, or other endocrine diseases due to insufficient hormones. Other serious and deadly complications are due to pancytopenia (anemia, thrombocytopenia, leukocytopenia) as a direct response to overcrowding by the Langerhans cells. Merkel cell carcinoma is an uncommon cancer of the Merkel cells and is categorized as neuroendocrine small cell carcinoma

Pemphigus vulgaris is an autoimmune disease that targets the intercellular proteins, desmosomes, that connect the keratinocytes to each other. Blisters form within the epidermis and are easily ruptured, resulting in acantholysis histologically. This disease is associated with a positive nikolsky sign, peeling away from the epidermis with rubbing of that area. Bullous Pemphigoid is another blistering disease that results in tense subepidermal blisters in older populations, that are due to antibodies that target the hemidesmosomes that connect the epidermis at the level of the basement membrane to the extracellular matrix of the dermis. This condition is not acantholytic and is not associated with a positive nikolsky sign.

Infections that affect the integrity of the skin include scalded skin syndrome caused by the exfoliative toxin released by staphylococcal aureus bacteria infection. This infection results in peeling away of the skin, positive nikolsky, an appearance of a severe burn (very red), and fever. Drug reactions like DRESS syndrome, erythema multiforme, Stevens-Johnsons syndrome, and Toxic Epidermal Necrolysis syndrome are often associated with certain medications that include sulfa-containing drugs, NSAIDs, and anti-seizure medications. [22][23][24][25][26][27][28][29]

The epidermal layer of skin contains much of our normal flora and the microbiome of the epidermis varies based on the body region. The microorganisms that inhabit our skin surface is nonpathogenic and can be commensal or mutualistic in nature. The bacteria that tend to predominate are staphylococci epidermidis, aureus, cutibacterium acnes, Corynebacterium, Streptococcus, candida and clostridium perfringens. When the protective skin barrier is altered, an infection can occur.  [30]

Review Questions

What is the term that refers to the connective tissue layer of the skin beneath the epidermis?

Histology, Trichodysplasia spinulosa, Trichodysplasia spinulosa polyomavirus, Healthy control on top, TS skin on the bottom, Skin over view, Epidermis, Hair follicle, Acanthosis, Eosinophilic protein granules, trichohyalin, HE Stain. Contributed by Kazem (more...)

What is the term that refers to the connective tissue layer of the skin beneath the epidermis?

Cross section of layers of the skin. Hair follicles, hair roots and hair shafts, sweat glands, pores, epidermis, dermis, hypodermis. Papillary and reticular layer. Eccrine sweat gland. Arrector pili muscles, sebaceous oil glands. Contributed by Chelsea (more...)

What is the term that refers to the connective tissue layer of the skin beneath the epidermis?

Illustration of cells of the epidermis. Stratum corneum, stratum lucidum, stratum granulosum, stratum spinosum, stratum basale, dermis. Contributed by Chelsea Rowe

1.

Bonifant H, Holloway S. A review of the effects of ageing on skin integrity and wound healing. Br J Community Nurs. 2019 Mar 01;24(Sup3):S28-S33. [PubMed: 30817191]

2.

Herskovitz I, Macquhae F, Fox JD, Kirsner RS. Skin movement, wound repair and development of engineered skin. Exp Dermatol. 2016 Feb;25(2):99-100. [PubMed: 26660718]

3.

Ravara B, Hofer C, Kern H, Guidolin D, Porzionato A, De Caro R, Albertin G. Dermal papillae flattening of thigh skin in Conus Cauda Syndrome. Eur J Transl Myol. 2018 Nov 02;28(4):7914. [PMC free article: PMC6317141] [PubMed: 30662702]

4.

Rzepka K, Schaarschmidt G, Nagler M, Wohlrab J. [Epidermal stem cells]. J Dtsch Dermatol Ges. 2005 Dec;3(12):962-73. [PubMed: 16405712]

5.

Karim N, Phinney BS, Salemi M, Wu PW, Naeem M, Rice RH. Human stratum corneum proteomics reveals cross-linking of a broad spectrum of proteins in cornified envelopes. Exp Dermatol. 2019 May;28(5):618-622. [PubMed: 30916809]

6.

Brown TM, Krishnamurthy K. StatPearls [Internet]. StatPearls Publishing; Treasure Island (FL): May 10, 2021. Histology, Dermis. [PubMed: 30570967]

7.

O'Connell RL, Rusby JE. Anatomy relevant to conservative mastectomy. Gland Surg. 2015 Dec;4(6):476-83. [PMC free article: PMC4646999] [PubMed: 26645002]

8.

Andersson T, Ertürk Bergdahl G, Saleh K, Magnúsdóttir H, Stødkilde K, Andersen CBF, Lundqvist K, Jensen A, Brüggemann H, Lood R. Common skin bacteria protect their host from oxidative stress through secreted antioxidant RoxP. Sci Rep. 2019 Mar 05;9(1):3596. [PMC free article: PMC6401081] [PubMed: 30837648]

9.

Losquadro WD. Anatomy of the Skin and the Pathogenesis of Nonmelanoma Skin Cancer. Facial Plast Surg Clin North Am. 2017 Aug;25(3):283-289. [PubMed: 28676156]

10.

Slominski AT, Manna PR, Tuckey RC. On the role of skin in the regulation of local and systemic steroidogenic activities. Steroids. 2015 Nov;103:72-88. [PMC free article: PMC4631694] [PubMed: 25988614]

11.

Fenner J, Silverberg NB. Skin diseases associated with atopic dermatitis. Clin Dermatol. 2018 Sep - Oct;36(5):631-640. [PubMed: 30217275]

12.

Hall BK. Germ layers, the neural crest and emergent organization in development and evolution. Genesis. 2018 Jun;56(6-7):e23103. [PubMed: 29637683]

13.

Denkler KA, Denkler C. The Direction of Optimal Skin Incisions Derived from Striae Distensae. Plast Reconstr Surg. 2015 Jul;136(1):120e-121e. [PubMed: 26111326]

14.

Schlader ZJ, Vargas NT. Regulation of Body Temperature by Autonomic and Behavioral Thermoeffectors. Exerc Sport Sci Rev. 2019 Apr;47(2):116-126. [PubMed: 30632999]

15.

Iizaka S. Skin hydration and lifestyle-related factors in community-dwelling older people. Arch Gerontol Geriatr. 2017 Sep;72:121-126. [PubMed: 28624752]

16.

Stecco C, Pirri C, Fede C, Fan C, Giordani F, Stecco L, Foti C, De Caro R. Dermatome and fasciatome. Clin Anat. 2019 Oct;32(7):896-902. [PubMed: 31087420]

17.

Iheanacho F, Vellipuram AR. StatPearls [Internet]. StatPearls Publishing; Treasure Island (FL): Sep 12, 2021. Physiology, Mechanoreceptors. [PubMed: 31082112]

18.

Murphrey MB, Agarwal S, Zito PM. StatPearls [Internet]. StatPearls Publishing; Treasure Island (FL): Aug 11, 2021. Anatomy, Hair. [PubMed: 30020684]

19.

Sanz-Gómez N, Freije A, Gandarillas A. Keratinocyte Differentiation by Flow Cytometry. Methods Mol Biol. 2020;2109:83-92. [PubMed: 31123997]

20.

Wagner T, Beer L, Gschwandtner M, Eckhart L, Kalinina P, Laggner M, Ellinger A, Gruber R, Kuchler U, Golabi B, Tschachler E, Mildner M. The Differentiation-Associated Keratinocyte Protein Cornifelin Contributes to Cell-Cell Adhesion of Epidermal and Mucosal Keratinocytes. J Invest Dermatol. 2019 Nov;139(11):2292-2301.e9. [PubMed: 31129056]

21.

Lemperle G, Knapp D, Tenenhaus M. Minimal Scar Formation After Orthopaedic Skin Incisions Along Main Folding Lines. J Bone Joint Surg Am. 2019 Mar 06;101(5):392-399. [PubMed: 30845033]

22.

Tenea D, Dinkel J, Becker JC, van der Walt E. Merkel Cell Carcinoma of the Head in a Young African Albino Woman with HIV/HTLV-1 Coinfection Associated with Multiple Squamous Cell Carcinomas. Case Rep Dermatol. 2019 Jan-Apr;11(1):113-122. [PMC free article: PMC6528093] [PubMed: 31143109]

23.

PDQ Adult Treatment Editorial Board. PDQ Cancer Information Summaries [Internet]. National Cancer Institute (US); Bethesda (MD): Sep 3, 2021. Melanoma Treatment (PDQ®): Patient Version. [PubMed: 26389388]

24.

Cribier B. Ann Dermatol Venereol. 2019 May;146 Suppl 2:IIS10-IIS15. [PubMed: 31133224]

25.

PDQ Cancer Genetics Editorial Board. PDQ Cancer Information Summaries [Internet]. National Cancer Institute (US); Bethesda (MD): Jul 6, 2021. Genetics of Skin Cancer (PDQ®): Health Professional Version. [PubMed: 26389333]

26.

Izumi K, Bieber K, Ludwig RJ. Current Clinical Trials in Pemphigus and Pemphigoid. Front Immunol. 2019;10:978. [PMC free article: PMC6509547] [PubMed: 31130959]

27.

Jordan KS. Staphylococcal Scalded Skin Syndrome: A Pediatric Dermatological Emergency. Adv Emerg Nurs J. 2019 Apr/Jun;41(2):129-134. [PubMed: 31033660]

28.

Vern-Gross TZ, Kowal-Vern A. Erythema multiforme, Stevens Johnson syndrome, and toxic epidermal necrolysis syndrome in patients undergoing radiation therapy: a literature review. Am J Clin Oncol. 2014 Oct;37(5):506-13. [PubMed: 22892429]

29.

PDQ Pediatric Treatment Editorial Board. PDQ Cancer Information Summaries [Internet]. National Cancer Institute (US); Bethesda (MD): Aug 27, 2021. Langerhans Cell Histiocytosis Treatment (PDQ®): Patient Version. [PubMed: 26389196]

30.

Sander MA, Sander MS, Isaac-Renton JL, Croxen MA. The Cutaneous Microbiome: Implications for Dermatology Practice. J Cutan Med Surg. 2019 Jul/Aug;23(4):436-441. [PubMed: 30938174]