When atrial pressure is greater than ventricular pressure the valves open?

At rest, the heart pumps around 5L of blood around the body every minute, but this can increase massively during exercise. To achieve this high output efficiently, the heart works through a carefully controlled sequence with every heartbeat – this sequence of events is known as the cardiac cycle.

Pressures Within the Heart

Table 1 – Pressures observed within cardiac chambers during systole and diastole
Heart region Pressure (mmHg)
Right atrium 0-4
Right ventricle 25 systolic; 4 diastolic
Pulmonary artery 25 systolic; 10 diastolic
Left atrium 8-10
Left ventricle 120 systolic; 10 diastolic
Aorta 120 systolic; 80 diastolic

The above table shows the range of pressures present throughout the heart during the cardiac cycle. Knowing these values can help us understand the progression between different stages of the cycle. For example, the pulmonary artery has a systolic pressure of 25mmHg, so the right ventricle must match this force to successfully eject blood.

The Cardiac Cycle

The cardiac cycle can be divided into four stages:

  • Filling phase – the ventricles fill during diastole and atrial systole.
  • Isovolumetric contraction – the ventricles contract, building up pressure ready to pump blood into the aorta/pulmonary trunk.
  • Outflow phase – the ventricles continue to contract, pushing blood into the aorta and the pulmonary trunk. This is also known as systole.
  • Isovolumetric relaxation – the ventricles relax, ready to re-fill with blood in the next filling phase.

This article will discuss each of the phases in more detail; describing the changes in pressure and the heart valves' actions in the cardiac cycle.

You can read more on the anatomy of the cardiac valves here.

Filling Phase

The ventricles are filled with blood in two stages – diastole (heart relaxation) and atrial systole (contraction of the atria).

In diastole, both the atria and the ventricles are relaxed. Blood flows from the vena cava and pulmonary veins into the right and left atria respectively, before flowing directly into the ventricles. The ventricles fill with blood at a steadily decreasing rate, until the ventricles' pressure is equal to that in the veins.

At the end of diastole, the atria contract, squirting a small amount of extra blood into the ventricles. This increases the ventricles' pressure so that it is now higher than that in the atria, causing the atrioventricular valves (mitral/tricuspid) to close.

Isovolumetric Contraction

As contraction begins both sets of valves are closed, meaning that no blood can escape from the ventricles. Therefore, the start of systole increases the pressure within the ventricles, ready to eject blood into the aorta and pulmonary trunk. The stage of isovolumetric contraction lasts for approximately 50ms, while the pressure builds up.

Outflow Phase

Once the ventricles' pressure exceeds the pressure in the aorta/pulmonary trunk, the outflow valves (aortic/pulmonary) open, and blood is pumped from the heart into the great arteries.

At the end of systole, around 330ms later, the ventricles begin to relax, decreasing the ventricular's pressure compared to the aorta. The decrease in pressure causes the valves to close. As well as this, blood begins to flow backwards through the outflow valves, which also contributes to the valves' closure.

Isovolumetric Relaxation

At the end of the outflow phase, both sets of valves are closed once again. The ventricles begin to relax, reducing the pressure in the ventricles so that the atrioventricular valves open. The ventricles then begin to fill with blood, and the cycle begins once again.

[caption id="attachment_13444" align="aligncenter" width="1024"]

When atrial pressure is greater than ventricular pressure the valves open?
Fig 1 - Pressure changes and important events within the cardiac cycle; a single cycle is shown.[/caption]

[start-clinical]

Clinical Relevance - Cardiac Auscultation

The carefully coordinated sequence of events described in this article means that blood flows smoothly in the healthy heart and so cannot be heard on auscultation. When listening to the heart, what can be heard are two sounds, sometimes described as a “lub” and a “dub”. These sounds are caused by the closure of valves in the cardiac cycle:

  • S1(the “lub”): occurs at the end of the filling phase when the atrioventricular valves snap shut
  • S2(the “dub”): occurs at the end of the outflow phase when the outflow valves snap shut

Damage to the heart valves can cause them to become narrowed (stenosis) or leaky (regurgitation). Either of these conditions can lead to turbulent blood flow which is heard as a humming sound on auscultation of the heart. These sounds are known as heart murmurs.

[caption id="attachment_19204" align="aligncenter" width="2213"]

When atrial pressure is greater than ventricular pressure the valves open?
Fig 2 - Diagram showing the sites of auscultation for the cardiac valves[/caption]

Clinical Relevance - Additional Heart Sounds

Occasionally within clinical practice, additional heart sounds can be heard; these are termed S3and S4and can be heard in the following situations:

  • S3 : this sound can sometimes be heard early in diastole (following S2). It is normal in young people or athletes; however, it often indicates congestive heart failure in older patients. It is caused by deceleration of blood moving from the left atrium to the left ventricle.
  • S4 : this sound can sometimes be heard during atrial contraction (late diastole, immediately before S1) and is associated with reduced ventricular compliance (“stiff” ventricles) or left ventricular hypertrophy.

[end-clinical]

By the end of this section, you will be able to:

  • Describe the relationship between blood pressure and blood flow
  • Summarize the events of the cardiac cycle
  • Compare atrial and ventricular systole and diastole
  • Relate heart sounds detected by auscultation to action of heart’s valves

The period of time that begins with contraction of the atria and ends with ventricular relaxation is known as the cardiac cycle. The period of contraction that the heart undergoes while it pumps blood into circulation is called systole. The period of relaxation that occurs as the chambers fill with blood is called diastole. Both the atria and ventricles undergo systole and diastole, and it is essential that these components be carefully regulated and coordinated to ensure blood is pumped efficiently to the body.

When atrial pressure is greater than ventricular pressure the valves open?

Figure 1. The cardiac cycle begins with atrial systole and progresses to ventricular systole, atrial diastole, and ventricular diastole, when the cycle begins again. Correlations to the ECG are highlighted.

Pressures and Flow

Fluids, whether gases or liquids, are materials that flow according to pressure gradients—that is, they move from regions that are higher in pressure to regions that are lower in pressure. Accordingly, when the heart chambers are relaxed (diastole), blood will flow into the atria from the veins, which are higher in pressure. As blood flows into the atria, the pressure will rise, so the blood will initially move passively from the atria into the ventricles. When the action potential triggers the muscles in the atria to contract (atrial systole), the pressure within the atria rises further, pumping blood into the ventricles. During ventricular systole, pressure rises in the ventricles, pumping blood into the pulmonary trunk from the right ventricle and into the aorta from the left ventricle. Again, as you consider this flow and relate it to the conduction pathway, the elegance of the system should become apparent.

Phases of the Cardiac Cycle

At the beginning of the cardiac cycle, both the atria and ventricles are relaxed (diastole). Blood is flowing into the right atrium from the superior and inferior venae cavae and the coronary sinus. Blood flows into the left atrium from the four pulmonary veins. The two atrioventricular valves, the tricuspid and mitral valves, are both open, so blood flows unimpeded from the atria and into the ventricles. Approximately 70–80 percent of ventricular filling occurs by this method. The two semilunar valves, the pulmonary and aortic valves, are closed, preventing backflow of blood into the right and left ventricles from the pulmonary trunk on the right and the aorta on the left.

Atrial Systole and Diastole

Contraction of the atria follows depolarization, represented by the P wave of the ECG. As the atrial muscles contract from the superior portion of the atria toward the atrioventricular septum, pressure rises within the atria and blood is pumped into the ventricles through the open atrioventricular (tricuspid, and mitral or bicuspid) valves. At the start of atrial systole, the ventricles are normally filled with approximately 70–80 percent of their capacity due to inflow during diastole. Atrial contraction, also referred to as the “atrial kick,” contributes the remaining 20–30 percent of filling (see the image below). Atrial systole lasts approximately 100 ms and ends prior to ventricular systole, as the atrial muscle returns to diastole.

Ventricular Systole

Ventricular systole (see image below) follows the depolarization of the ventricles and is represented by the QRS complex in the ECG. It may be conveniently divided into two phases, lasting a total of 270 ms. At the end of atrial systole and just prior to atrial contraction, the ventricles contain approximately 130 mL blood in a resting adult in a standing position. This volume is known as the end diastolic volume (EDV) or preload.

Initially, as the muscles in the ventricle contract, the pressure of the blood within the chamber rises, but it is not yet high enough to open the semilunar (pulmonary and aortic) valves and be ejected from the heart. However, blood pressure quickly rises above that of the atria that are now relaxed and in diastole. This increase in pressure causes blood to flow back toward the atria, closing the tricuspid and mitral valves. Since blood is not being ejected from the ventricles at this early stage, the volume of blood within the chamber remains constant. Consequently, this initial phase of ventricular systole is known as isovolumic contraction, also called isovolumetric contraction (see image below).

In the second phase of ventricular systole, the ventricular ejection phase, the contraction of the ventricular muscle has raised the pressure within the ventricle to the point that it is greater than the pressures in the pulmonary trunk and the aorta. Blood is pumped from the heart, pushing open the pulmonary and aortic semilunar valves. Pressure generated by the left ventricle will be appreciably greater than the pressure generated by the right ventricle, since the existing pressure in the aorta will be so much higher. Nevertheless, both ventricles pump the same amount of blood. This quantity is referred to as stroke volume. Stroke volume will normally be in the range of 70–80 mL. Since ventricular systole began with an EDV of approximately 130 mL of blood, this means that there is still 50–60 mL of blood remaining in the ventricle following contraction. This volume of blood is known as the end systolic volume (ESV).

Ventricular Diastole

Ventricular relaxation, or diastole, follows repolarization of the ventricles and is represented by the T wave of the ECG. It too is divided into two distinct phases and lasts approximately 430 ms.

During the early phase of ventricular diastole, as the ventricular muscle relaxes, pressure on the remaining blood within the ventricle begins to fall. When pressure within the ventricles drops below pressure in both the pulmonary trunk and aorta, blood flows back toward the heart, producing the dicrotic notch (small dip) seen in blood pressure tracings. The semilunar valves close to prevent backflow into the heart. Since the atrioventricular valves remain closed at this point, there is no change in the volume of blood in the ventricle, so the early phase of ventricular diastole is called the isovolumic ventricular relaxation phase, also called isovolumetric ventricular relaxation phase (see image below).

In the second phase of ventricular diastole, called late ventricular diastole, as the ventricular muscle relaxes, pressure on the blood within the ventricles drops even further. Eventually, it drops below the pressure in the atria. When this occurs, blood flows from the atria into the ventricles, pushing open the tricuspid and mitral valves. As pressure drops within the ventricles, blood flows from the major veins into the relaxed atria and from there into the ventricles. Both chambers are in diastole, the atrioventricular valves are open, and the semilunar valves remain closed (see image below). The cardiac cycle is complete. Figure 2 illustrates the relationship between the cardiac cycle and the ECG.

When atrial pressure is greater than ventricular pressure the valves open?

Figure 2. Initially, both the atria and ventricles are relaxed (diastole). The P wave represents depolarization of the atria and is followed by atrial contraction (systole). Atrial systole extends until the QRS complex, at which point, the atria relax. The QRS complex represents depolarization of the ventricles and is followed by ventricular contraction. The T wave represents the repolarization of the ventricles and marks the beginning of ventricular relaxation.

Heart Sounds

One of the simplest, yet effective, diagnostic techniques applied to assess the state of a patient’s heart is auscultation using a stethoscope.

In a normal, healthy heart, there are only two audible heart sounds: S1 and S2. S1 is the sound created by the closing of the atrioventricular valves during ventricular contraction and is normally described as a “lub,” or first heart sound. The second heart sound, S2, is the sound of the closing of the semilunar valves during ventricular diastole and is described as a “dub” (Figure 3). In both cases, as the valves close, the openings within the atrioventricular septum guarded by the valves will become reduced, and blood flow through the opening will become more turbulent until the valves are fully closed. There is a third heart sound, S3, but it is rarely heard in healthy individuals. It may be the sound of blood flowing into the atria, or blood sloshing back and forth in the ventricle, or even tensing of the chordae tendineae. S3 may be heard in youth, some athletes, and pregnant women. If the sound is heard later in life, it may indicate congestive heart failure, warranting further tests. Some cardiologists refer to the collective S1, S2, and S3 sounds as the “Kentucky gallop,” because they mimic those produced by a galloping horse. The fourth heart sound, S4, results from the contraction of the atria pushing blood into a stiff or hypertrophic ventricle, indicating failure of the left ventricle. S4 occurs prior to S1 and the collective sounds S4, S1, and S2 are referred to by some cardiologists as the “Tennessee gallop,” because of their similarity to the sound produced by a galloping horse with a different gait. A few individuals may have both S3 and S4, and this combined sound is referred to as S7.

When atrial pressure is greater than ventricular pressure the valves open?

Figure 3. In this illustration, the x-axis reflects time with a recording of the heart sounds. The y-axis represents pressure.

The term murmur is used to describe an unusual sound coming from the heart that is caused by the turbulent flow of blood. Murmurs are graded on a scale of 1 to 6, with 1 being the most common, the most difficult sound to detect, and the least serious. The most severe is a 6. Phonocardiograms or auscultograms can be used to record both normal and abnormal sounds using specialized electronic stethoscopes.

During auscultation, it is common practice for the clinician to ask the patient to breathe deeply. This procedure not only allows for listening to airflow, but it may also amplify heart murmurs. Inhalation increases blood flow into the right side of the heart and may increase the amplitude of right-sided heart murmurs. Expiration partially restricts blood flow into the left side of the heart and may amplify left-sided heart murmurs. Figure 4 indicates proper placement of the bell of the stethoscope to facilitate auscultation.

When atrial pressure is greater than ventricular pressure the valves open?

Figure 4. Proper placement of the bell of the stethoscope facilitates auscultation. At each of the four locations on the chest, a different valve can be heard.

Chapter Review

The cardiac cycle comprises a complete relaxation and contraction of both the atria and ventricles, and lasts approximately 0.8 seconds. Beginning with all chambers in diastole, blood flows passively from the veins into the atria and past the atrioventricular valves into the ventricles. The atria begin to contract (atrial systole), following depolarization of the atria, and pump blood into the ventricles. The ventricles begin to contract (ventricular systole), raising pressure within the ventricles. When ventricular pressure rises above the pressure in the atria, blood flows toward the atria, producing the first heart sound, S1 or lub. As pressure in the ventricles rises above two major arteries, blood pushes open the two semilunar valves and moves into the pulmonary trunk and aorta in the ventricular ejection phase. Following ventricular repolarization, the ventricles begin to relax (ventricular diastole), and pressure within the ventricles drops. As ventricular pressure drops, there is a tendency for blood to flow back into the atria from the major arteries, producing the dicrotic notch in the ECG and closing the two semilunar valves. The second heart sound, S2 or dub, occurs when the semilunar valves close. When the pressure falls below that of the atria, blood moves from the atria into the ventricles, opening the atrioventricular valves and marking one complete heart cycle. The valves prevent backflow of blood. Failure of the valves to operate properly produces turbulent blood flow within the heart; the resulting heart murmur can often be heard with a stethoscope.

Self Check

Answer the question(s) below to see how well you understand the topics covered in the previous section.

Describe one cardiac cycle, beginning with both atria and ventricles relaxed.

Glossary

cardiac cycle period of time between the onset of atrial contraction (atrial systole) and ventricular relaxation (ventricular diastole)

diastole:: period of time when the heart muscle is relaxed and the chambers fill with blood

end diastolic volume (EDV): (also, preload) the amount of blood in the ventricles at the end of atrial systole just prior to ventricular contraction

end systolic volume (ESV): amount of blood remaining in each ventricle following systole

heart sounds: sounds heard via auscultation with a stethoscope of the closing of the atrioventricular valves (“lub”) and semilunar valves (“dub”)

isovolumic contraction: also, isovolumetric contraction) initial phase of ventricular contraction in which tension and pressure in the ventricle increase, but no blood is pumped or ejected from the heart

isovolumic ventricular relaxation phase: initial phase of the ventricular diastole when pressure in the ventricles drops below pressure in the two major arteries, the pulmonary trunk, and the aorta, and blood attempts to flow back into the ventricles, producing the dicrotic notch of the ECG and closing the two semilunar valves

murmur: unusual heart sound detected by auscultation; typically related to septal or valve defects

preload: (also, end diastolic volume) amount of blood in the ventricles at the end of atrial systole just prior to ventricular contraction

systole: period of time when the heart muscle is contracting

ventricular ejection phase: second phase of ventricular systole during which blood is pumped from the ventricle