Which of the following best supports the claim that ethylene initiates the signal transduction pathway that leads to ripening fruit?

  1. Abeles F, Morgan PW, Saltveit Jr ME. Ethylene in plant biology. 2nd ed. San Diego: Academic Press; 1992.

    Google Scholar 

  2. McManus MT. Annual plant reviews vol. 44: the plant hormone ethylene. Oxford: Wiley-Blackwell; 2012.

    Book  Google Scholar 

  3. Bakshi A, Shemansky JM, Chang C, Binder BM. History of research on the plant hormone ethylene. J Plant Growth Reg. 2015. doi:10.1007/s00344-015-9522-9.

    Google Scholar 

  4. Kende H. Plant biology and the Nobel prize. Science. 1998;282:627.

    CAS  Article  PubMed  Google Scholar 

  5. de Poel V. Van der Straeten D. 1-Aminocyclopropane-1-carboxylic acid (ACC) in plants: more than just the precursor of ethylene! Front. Plant Sci. 2014;5:1–11.

    Google Scholar 

  6. Xu J, Zhang S. Ethylene biosynthesis and regulation in plants. In: Wen C-K, editor. Ethylene in plants. Berlin: Springer; 2015. p. 1–25.

    Google Scholar 

  7. Abeles FB, Heggestad HE. Ethylene: an urban air pollutant. J Air Pollution Control Assoc. 1973;23:517–21.

    CAS  Article  Google Scholar 

  8. Dillard MM. Ethylene--the new general anesthetic. J Natl Med Assoc. 1930;22:10–1.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Spiller HA, Hale JR, De Boer JZ. The Delphic oracle: a multidisciplinary defense of the gaseous vent theory. J Toxicol Clin Toxicol. 2002;40:189–96.

    CAS  Article  PubMed  Google Scholar 

  10. Bleecker AB, Estelle MA, Somerville C, Kende H. Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science. 1988;241:1086–9.

    CAS  Article  PubMed  Google Scholar 

  11. Guzmán P, Ecker JR. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell. 1990;2:513–23.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chang C, Kwok SF, Bleecker AB, Meyerowitz EM. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science. 1993;262:539–44.

    CAS  Article  PubMed  Google Scholar 

  13. Klee HJ. Ethylene signal transduction: Moving beyond Arabidopsis. Plant Physiol. 2004;135:660–7.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Guillaume RG, Sauter M. Ethylene biosynthesis and signaling in rice. Plant Sci. 2008;175:32–42.

    Article  Google Scholar 

  15. Ju C, Van de Poel B, Cooper ED, Thierer JH, Gibbons TR, Delwiche CF, et al. Conservation of ethylene as a plant hormone over 450 million years of evolution. Nat Plants. 2015;1:Article 14004.

    Article  PubMed  Google Scholar 

  16. Binder BM, Chang C, Schaller GE. Perception of ethylene by plants--ethylene receptors. In: McManus MT, editor. Annual plant reviews vol. 44: The plant hormone ethylene. Oxford: Wiley-Blackwell; 2012. p. 117–45.

    Chapter  Google Scholar 

  17. Shakeel SN, Wang X, Binder BM, Schaller GE. Mechanisms of signal transduction by ethylene: overlapping and non-overlapping signalling roles in a receptor family. AoB plants. 2013;5:plt010.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Schaller GE, Bleecker AB. Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science. 1995;270:1809–11.

    CAS  Article  PubMed  Google Scholar 

  19. Rodriguez FI, Esch JJ, Hall AE, Binder BM, Schaller GE, Bleecker AB. A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science. 1999;283:996–8.

    CAS  Article  PubMed  Google Scholar 

  20. Hua J, Meyerowitz EM. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell. 1998;94:261–71.

    CAS  Article  PubMed  Google Scholar 

  21. Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell. 1993;72:427–41.

    CAS  Article  PubMed  Google Scholar 

  22. Bisson MMA, Groth G. New insight in ethylene signaling: autokinase activity of ETR1 modulates the interaction of receptors and EIN2. Mol Plant. 2010;3:882–9.

    CAS  Article  PubMed  Google Scholar 

  23. Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science. 1999;284:2148–52.

    CAS  Article  PubMed  Google Scholar 

  24. Wen X, Zhang C, Ji Y, Zhao Q, He W, An F, et al. Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus. Cell Res. 2012;22:1613–6.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Ju C, Yoon GM, Shemansky JM, Lin DY, Ying ZI, Chang J, et al. CTR1 phosphorylates EIN2 to control ethylene signaling from the ER membrane to the nucleus. Proc Natl Acad Sci U S A. 2012;109:19486–91.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Li W, Ma M, Feng Y, Li H, Wang Y, Ma Y, et al. EIN2-directed translational regulation of ethylene signaling in Arabidopsis. Cell. 2015;163:670–83.

    CAS  Article  PubMed  Google Scholar 

  27. Merchante C, Brumos J, Yun J, Hu Q, Spencer KR, Enrıquez P, et al. Gene-specific translation regulation mediated by the hormone-signaling molecule EIN2. Cell. 2015;163:684–97.

    CAS  Article  PubMed  Google Scholar 

  28. An F, Zhao Q, Ji Y, Li W, Jiang Z, Yu X, et al. Ethylene-induced stabilization of ETHYLENE INSENSITIVE3and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 Binding F-Box 1 and 2 that requires EIN2in Arabidopsis. Plant Cell. 2010;22:2384–401.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Chang KN, Zhong S, Weirauch MT, Hon G, Pelizzola M, Li H, et al. Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis. Elife. 2013;2, e00675.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Solano R, Stepanova A, Chao QM, Ecker JR. Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev. 1998;12:3703–14.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Vandenbussche F, Van der Straeten D. One for all and all for one: Crosstalk of multiple signals controlling the plant phenotype. J Plant Growth Regul. 2007;26:178–87.

    CAS  Article  Google Scholar 

  32. Zhu Z, Guo H. Interactions of ethylene and other signals. In: Wen C-K, editor. Ethylene in plants. Berlin: Springer; 2015. p. 135–52.

    Google Scholar 

  33. Bailey-Serres J, Fukao T, Ronald P, Ismail A, Heuer S, Mackill D. Submergence tolerant rice: SUB1’s journey from landrace to modern cultivar. Rice. 2010;3:138–47.

    Article  Google Scholar 

  34. An F, Zhang X, Zhu Z, Ji Y, He W, Jiang Z, et al. Coordinated regulation of apical hook development by gibberellins and ethylene in etiolated Arabidopsis seedlings. Cell Res. 2012;22:915–27.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Song S, Huang H, Gao H, Wang J, Wu D, Liu X, et al. Interaction between MYC2 and ETHYLENEINSENSITIVE3 modulates antagonism between jasmonate and ethylene signaling in Arabidopsis. Plant Cell. 2014;26:263–79.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Wilkinson JQ, Lanahan MB, Clark DG, Bleecker AB, Chang C, Meyerowitz EM, et al. A dominant mutant receptor from Arabidopsis confers ethylene insensitivity in heterologous plants. Nat Biotechnol. 1997;15:444–8.

    CAS  Article  PubMed  Google Scholar 

  37. Merchante C, Alonso JM, Stepanova AN. Ethylene signaling: simple ligand, complex regulation. Curr Opin Plant Biol. 2013;16:554–60.

    CAS  Article  PubMed  Google Scholar 


Page 2

The two-step ethylene biosynthesis pathway in plants. In the first committed step, which is generally the rate-limiting step, ACC is synthesized from SAM by the enzyme ACS. SAM is produced from methionine in the “Yang cycle” of methionine cycling (named after Shang Fa Yang and colleagues, who elucidated the ethylene biosynthesis pathway in the 1970s). In the second step, ACC is converted to ethylene by the enzyme ACO