Which results are expected when arachidonic acid is metabolized through the prostaglandin pathway?

  1. Fürstenberger G, Krieg P, Müller-Decker K, Habenicht AJR: What are cyclooxygenases and lipoxygenases doing in the driver's seat of carcinogenesis?. Int J Cancer. 2006, 119: 2247-2254. 10.1002/ijc.22153

    Article  PubMed  CAS  Google Scholar 

  2. Chow LW, Loo WT, Toi M: Current directions for COX-2 inhibition in breast cancer. Biomed Pharmacother. 2005, 59 (Suppl 2): S281-S284.

    Article  CAS  PubMed  Google Scholar 

  3. Ryan PD, Goss PE: Adjuvant hormonal therapy in peri- and postmenopausal breast cancer. Oncologist. 2006, 11: 718-731. 10.1634/theoncologist.11-7-718

    Article  CAS  PubMed  Google Scholar 

  4. Gierach GL, et al: Nonsteroidal anti-inflammatory drugs and breast cancer risk in the National Institutes of Health-AARP Diet and Health Study. Breast Cancer Res. 2008, 10: R38. 10.1186/bcr2089

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Chandrasekharan NV, et al: COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc Natl Acad Sci. 2002, 99: 13926-13931. 10.1073/pnas.162468699

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Garavito RM, Mulichak AM: The structure of mammalian cyclooxygenases. Annu Rev Biophys Biomol Struct. 2003, 32: 183-206. 10.1146/annurev.biophys.32.110601.141906

    Article  CAS  PubMed  Google Scholar 

  7. Kaduce TL, Figard PH, Leifur R, Spector AA: Formation of 9-hydroxyoctadecadienoic acid from linoleic acid in endothelial cells. J Biol Chem. 1989, 264: 6823-6830.

    CAS  PubMed  Google Scholar 

  8. Chan BS, Satriano JA, Pucci M, Schuster VL: Mechanism of prostaglandin E2 transport across the plasma membrane of HeLa cells and Xenopus oocytes expressing the prostaglandin transporter "PGT". J Biol Chem. 1998, 273: 6689-6697. 10.1074/jbc.273.12.6689

    Article  CAS  PubMed  Google Scholar 

  9. Ushikubi F, et al: Impaired febrile response in mice lacking the prostaglandin E receptor subtype EP3. Nature. 1998, 395: 281-284. 10.1038/26233

    Article  CAS  PubMed  Google Scholar 

  10. Sugimoto Y, Segi E, Tsuboi K, Ichikawa A, Narumiya S: Female reproduction in mice lacking the prostaglandin F receptor. Roles of prostaglandin and oxytocin receptors in parturition. Adv Exp Med Biol. 1998, 449: 317-321. 10.1007/978-1-4615-4871-3_39

    Article  CAS  PubMed  Google Scholar 

  11. Murata T, et al: Altered pain perception and inflammatory response in mice lacking prostacyclin receptor. Nature. 1997, 388: 678-682. 10.1038/41780

    Article  CAS  PubMed  Google Scholar 

  12. Lim H, et al: Cyclo-oxygenase-2-derived prostacyclin mediates embryo implantation in the mouse via PPARdelta. Genes Dev. 1999, 13: 1561-1574. 10.1101/gad.13.12.1561

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Coleman RA, Smith WL, Narumiya S: International Union of Pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacol Rev. 1994, 46: 205-229.

    CAS  PubMed  Google Scholar 

  14. Narumiya S, Sugimoto Y, Ushikubi F: Prostanoid receptors: structures, properties, and functions. Physiol Rev. 1999, 79: 1193-1226.

    CAS  PubMed  Google Scholar 

  15. Dubois RN, et al: Cyclooxygenase in biology and disease. FASEB J. 1998, 12: 1063-1073.

    CAS  PubMed  Google Scholar 

  16. Lydford SJ, McKechnie KC, Dougall IG: Pharmacological studies on prostanoid receptors in the rabbit isolated saphenous vein: a comparison with the rabbit isolated ear artery. Br J Pharmacol. 1996, 117: 13-20. 10.1111/j.1476-5381.1996.tb15148.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Funk CD, et al: Cloning and expression of a cDNA for the human prostaglandin E receptor EP1 subtype. J Biol Chem. 1993, 268: 26767-26772.

    CAS  PubMed  Google Scholar 

  18. Sharif NA, Davis TL: Cloned human EP1 prostanoid receptor pharmacology characterized using radioligand binding techniques. J Pharm Pharmacol. 2002, 54: 539-547. 10.1211/0022357021778655

    Article  CAS  PubMed  Google Scholar 

  19. An S, Yang J, Xia M, Goetzl EJ: Cloning and expression of the EP2 subtype of human receptors for prostaglandin E2. Biochem Biophys Res Commun. 1993, 197: 263-270. 10.1006/bbrc.1993.2470

    Article  CAS  PubMed  Google Scholar 

  20. Yang J, Xia M, Goetzl EJ, An S: Cloning and expression of the EP3-subtype of human receptors for prostaglandin E2. Biochem Biophys Res Commun. 1994, 198: 999-1006. 10.1006/bbrc.1994.1142

    Article  CAS  PubMed  Google Scholar 

  21. Bastien L, Sawyer N, Grygorczyk R, Metters KM, Adam M: Cloning, functional expression, and characterization of the human prostaglandin E2 receptor EP2 subtype. J Biol Chem. 1994, 269: 11873-11877.

    CAS  PubMed  Google Scholar 

  22. Batshake B, Nilsson C, Sundelin J: Molecular characterization of the mouse prostanoid EP1 receptor gene. Eur J Biochem. 1995, 231: 809-814. 10.1111/j.1432-1033.1995.tb20765.x

    Article  CAS  PubMed  Google Scholar 

  23. Regan JW, et al: Cloning of a novel human prostaglandin receptor with characteristics of the pharmacologically defined EP2 subtype. Mol Pharmacol. 1994, 46: 213-220.

    CAS  PubMed  Google Scholar 

  24. Hizaki H, et al: Abortive expansion of the cumulus and impaired fertility in mice lacking the prostaglandin E receptor subtype EP(2). Proc Natl Acad Sci USA. 1999, 96: 10501-10506. 10.1073/pnas.96.18.10501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Sheller JR, Mitchell D, Meyrick B, Oates J, Breyer R: EP(2) receptor mediates bronchodilation by PGE(2) in mice. J Appl Physiol. 2000, 88: 2214-2218.

    CAS  PubMed  Google Scholar 

  26. Boie Y, et al: Molecular cloning and characterization of the four rat prostaglandin E2 prostanoid receptor subtypes. Eur J Pharmacol. 1997, 340: 227-241. 10.1016/S0014-2999(97)01383-6

    Article  CAS  PubMed  Google Scholar 

  27. Katsuyama M, et al: The mouse prostaglandin E receptor EP2 subtype: cloning, expression, and northern blot analysis. FEBS Lett. 1995, 372: 151-156. 10.1016/0014-5793(95)00966-D

    Article  CAS  PubMed  Google Scholar 

  28. Kotani M, et al: Structural organization of the human prostaglandin EP3 receptor subtype gene (PTGER3). Genomics. 1997, 40: 425-434. 10.1006/geno.1996.4585

    Article  CAS  PubMed  Google Scholar 

  29. Namba T, et al: Alternative splicing of C-terminal tail of prostaglandin E receptor subtype EP3 determines G-protein specificity. Nature. 1993, 365: 166-170. 10.1038/365166a0

    Article  CAS  PubMed  Google Scholar 

  30. Aoki J, et al: Signal transduction pathway regulating prostaglandin EP3 receptor-induced neurite retraction: requirement for two different tyrosine kinases. Biochem J. 1999, 340 (Pt 2): 365-369.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Audoly LP, et al: Prostaglandin E-prostanoid-3 receptor activation of cyclic AMP response element-mediated gene transcription. J Pharmacol Exp Ther. 1999, 289: 140-148.

    CAS  PubMed  Google Scholar 

  32. Hasegawa H, Negishi M, Ichikawa A: Two isoforms of the prostaglandin E receptor EP3 subtype different in agonist-independent constitutive activity. J Biol Chem. 1996, 271: 1857-1860. 10.1074/jbc.271.4.1857

    Article  CAS  PubMed  Google Scholar 

  33. Audoly LP, et al: Role of EP(2) and EP(3) PGE(2) receptors in control of murine renal hemodynamics. Am J Physiol Heart Circ Physiol. 2001, 280: H327-H333.

    CAS  PubMed  Google Scholar 

  34. Fabre JE, et al: Activation of the murine EP3 receptor for PGE2 inhibits cAMP production and promotes platelet aggregation. J Clin Invest. 2001, 107: 603-610. 10.1172/JCI10881

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Sugimoto Y, Narumiya S, Ichikawa A: Distribution and function of prostanoid receptors: studies from knockout mice. Prog Lipid Res. 2000, 39: 289-314. 10.1016/S0163-7827(00)00008-4

    Article  CAS  PubMed  Google Scholar 

  36. Kiriyama M, et al: Ligand binding specificities of the eight types and subtypes of the mouse prostanoid receptors expressed in Chinese hamster ovary cells. Br J Pharmacol. 1997, 122: 217-224. 10.1038/sj.bjp.0701367

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Kay AB, Barata L, Meng Q, Durham SR, Ying S: Eosinophils and eosinophil-associated cytokines in allergic inflammation. Int Arch Allergy Immunol. 1997, 113: 196-199. 10.1159/000237545

    Article  CAS  PubMed  Google Scholar 

  38. Hayaishi O: Molecular mechanisms of sleep-wake regulation: a role of prostaglandin D2. Philos Trans R Soc Lond B Biol Sci. 2000, 355: 275-280. 10.1098/rstb.2000.0564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Eguchi N, et al: Lack of tactile pain (allodynia) in lipocalin-type prostaglandin D synthase-deficient mice. Proc Natl Acad Sci USA. 1999, 96: 726-730. 10.1073/pnas.96.2.726

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Boie Y, Sawyer N, Slipetz DM, Metters KM, Abramovitz M: Molecular cloning and characterization of the human prostanoid DP receptor. J Biol Chem. 1995, 270: 18910-18916. 10.1074/jbc.270.32.18910

    Article  CAS  PubMed  Google Scholar 

  41. Nagata K, et al: CRTH2, an orphan receptor of T-helper-2-cells, is expressed on basophils and eosinophils and responds to mast cell-derived factor(s). FEBS Lett. 1999, 459: 195-199. 10.1016/S0014-5793(99)01251-X

    Article  CAS  PubMed  Google Scholar 

  42. Norel X, et al: Prostanoid receptors involved in the relaxation of human bronchial preparations. Br J Pharmacol. 1999, 126: 867-872. 10.1038/sj.bjp.0702392

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Walch L, et al: Prostanoid receptors involved in the relaxation of human pulmonary vessels. Br J Pharmacol. 1999, 126: 859-866. 10.1038/sj.bjp.0702393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Hirai H, et al: Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J Exp Med. 2001, 193: 255-261. 10.1084/jem.193.2.255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Monneret G, Gravel S, Diamond M, Rokach J, Powell WS: Prostaglandin D2 is a potent chemoattractant for human eosinophils that acts via a novel DP receptor. Blood. 2001, 98: 1942-1948. 10.1182/blood.V98.6.1942

    Article  CAS  PubMed  Google Scholar 

  46. Horton EW, Poyser NL: Uterine luteolytic hormone: a physiological role for prostaglandin F2alpha. Physiol Rev. 1976, 56: 595-651.

    CAS  PubMed  Google Scholar 

  47. Barnard JW, Ward RA, Taylor AE: Evaluation of prostaglandin F2 alpha and prostacyclin interactions in the isolated perfused rat lung. J Appl Physiol. 1992, 72: 2469-2474.

    CAS  PubMed  Google Scholar 

  48. Adams JW, et al: Prostaglandin F2 alpha stimulates hypertrophic growth of cultured neonatal rat ventricular myocytes. J Biol Chem. 1996, 271: 1179-1186. 10.1074/jbc.271.2.1179

    Article  CAS  PubMed  Google Scholar 

  49. Abramovitz M, et al: Cloning and expression of a cDNA for the human prostanoid FP receptor. J Biol Chem. 1994, 269: 2632-2636.

    CAS  PubMed  Google Scholar 

  50. Pierce KL, Fujino H, Srinivasan D, Regan JW: Activation of FP prostanoid receptor isoforms leads to Rho-mediated changes in cell morphology and in the cell cytoskeleton. J Biol Chem. 1999, 274: 35944-35949. 10.1074/jbc.274.50.35944

    Article  CAS  PubMed  Google Scholar 

  51. Muller K, Krieg P, Marks F, Furstenberger G: Expression of PGF(2alpha) receptor mRNA in normal, hyperplastic and neoplastic skin. Carcinogenesis. 2000, 21: 1063-1066. 10.1093/carcin/21.5.1063

    Article  CAS  PubMed  Google Scholar 

  52. Nakajima T, et al: New Fluoroprostaglandin F(2alpha) Derivatives with Prostanoid FP-Receptor Agonistic Activity as Potent Ocular-Hypotensive Agents. Biol Pharm Bull. 2003, 26: 1691-1695. 10.1248/bpb.26.1691

    Article  CAS  PubMed  Google Scholar 

  53. Bunting S, Gryglewski R, Moncada S, Vane JR: Arterial walls generate from prostaglandin endoperoxides a substance (prostaglandin X) which relaxes strips of mesenteric and coeliac ateries and inhibits platelet aggregation. Prostaglandins. 1976, 12: 897-913.

    Article  CAS  PubMed  Google Scholar 

  54. Moncada S: Eighth Gaddum Memorial Lecture. University of London Institute of Education, December 1980. Biological importance of prostacyclin. Br J Pharmacol. 1982, 76: 3-31. 10.1111/j.1476-5381.1982.tb09186.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Moncada S, Higgs EA, Vane JR: Human arterial and venous tissues generate prostacyclin (prostaglandin x), a potent inhibitor of platelet aggregation. Lancet. 1977, 1: 18-20.

    Article  CAS  PubMed  Google Scholar 

  56. Vane JR, Botting RM: Pharmacodynamic profile of prostacyclin. Am J Cardiol. 1995, 75: 3A-10A. 10.1016/S0002-9149(99)80377-4

    Article  CAS  PubMed  Google Scholar 

  57. Smith WL, DeWitt DL, Garavito RM: Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem. 2000, 69: 145-182. 10.1146/annurev.biochem.69.1.145

    Article  CAS  PubMed  Google Scholar 

  58. McAdam BF, et al: Systemic biosynthesis of prostacyclin by cyclooxygenase (COX)-2: the human pharmacology of a selective inhibitor of COX-2. Proc Natl Acad Sci USA. 1999, 96: 272-277. 10.1073/pnas.96.1.272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Catella-Lawson F, et al: Effects of specific inhibition of cyclooxygenase-2 on sodium balance, hemodynamics, and vasoactive eicosanoids. J Pharmacol Exp Ther. 1999, 289: 735-741.

    CAS  PubMed  Google Scholar 

  60. Brock TG, McNish RW, Peters-Golden M: Arachidonic acid is preferentially metabolized by cyclooxygenase-2 to prostacyclin and prostaglandin E2. J Biol Chem. 1999, 274: 11660-11666. 10.1074/jbc.274.17.11660

    Article  CAS  PubMed  Google Scholar 

  61. Armstrong RA, Lawrence RA, Jones RL, Wilson NH, Collier A: Functional and ligand binding studies suggest heterogeneity of platelet prostacyclin receptors. Br J Pharmacol. 1989, 97: 657-668. 10.1111/j.1476-5381.1989.tb12001.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Namba T, et al: cDNA cloning of a mouse prostacyclin receptor. Multiple signaling pathways and expression in thymic medulla. J Biol Chem. 1994, 269: 9986-9992.

    CAS  PubMed  Google Scholar 

  63. Breyer RM, Bagdassarian CK, Myers SA, Breyer MD: Prostanoid receptors: subtypes and signaling. Annu Rev Pharmacol Toxicol. 2001, 41: 661-690. 10.1146/annurev.pharmtox.41.1.661

    Article  CAS  PubMed  Google Scholar 

  64. Smyth EM, Austin SC, Reilly MP, FitzGerald GA: Internalization and sequestration of the human prostacyclin receptor. J Biol Chem. 2000, 275: 32037-32045.

    Article  CAS  PubMed  Google Scholar 

  65. Dorn GW 2nd, Sens D, Chaikhouni A, Mais D, Halushka PV: Cultured human vascular smooth muscle cells with functional thromboxane A2 receptors: measurement of U46619-induced 45calcium efflux. Circ Res. 1987, 60: 952-956. 10.1161/01.RES.60.6.952

    Article  CAS  PubMed  Google Scholar 

  66. Pakala R, Willerson JT, Benedict CR: Effect of serotonin, thromboxane A2, and specific receptor antagonists on vascular smooth muscle cell proliferation. Circulation. 1997, 96: 2280-2286. 10.1161/01.CIR.96.7.2280

    Article  CAS  PubMed  Google Scholar 

  67. FitzGerald GA: Mechanisms of platelet activation: thromboxane A2 as an amplifying signal for other agonists. Am J Cardiol. 1991, 68: 11B-15B. 10.1016/0002-9149(91)90379-Y

    Article  CAS  PubMed  Google Scholar 

  68. Ali S, Davis MG, Becker MW, Dorn GW 2nd: Thromboxane A2 stimulates vascular smooth muscle hypertrophy by up-regulating the synthesis and release of endogenous basic fibroblast growth factor. J Biol Chem. 1993, 268: 17397-17403.

    CAS  PubMed  Google Scholar 

  69. Hirata M, et al: Cloning and expression of cDNA for a human thromboxane A2 receptor. Nature. 1991, 349: 617-620. 10.1038/349617a0

    Article  CAS  PubMed  Google Scholar 

  70. Raychowdhury MK, et al: Alternative splicing produces a divergent cytoplasmic tail in the human endothelial thromboxane A2 receptor. J Biol Chem. 1995, 270: 7011. 10.1074/jbc.270.12.7011

    Article  CAS  PubMed  Google Scholar 

  71. Miggin SM, Kinsella BT: Expression and tissue distribution of the mRNAs encoding the human thromboxane A2 receptor (TP) alpha and beta isoforms. Biochim Biophys Acta. 1998, 1425: 543-559. 10.1016/S0304-4165(98)00109-3

    Article  CAS  PubMed  Google Scholar 

  72. Needleman P, Wyche A, Raz A: Platelet and blood vessel arachidonate metabolism and interactions. J Clin Invest. 1979, 63: 345-349. 10.1172/JCI109309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Cogolludo A, Moreno L, Bosca L, Tamargo J, Perez-Vizcaino F: Thromboxane A2-induced inhibition of voltage-gated K+ channels and pulmonary vasoconstriction: role of protein kinase Czeta. Circ Res. 2003, 93: 656-663. 10.1161/01.RES.0000095245.97945.FE

    Article  CAS  PubMed  Google Scholar 

  74. Sullivan P, Smyth EM: Herterodimerization of the a and b isoforms of the human thromboxane receptor. Arterioscler Thromb Vasc Biol. 2002, 22: 878.

    Article  Google Scholar 

  75. Powles TJ, Dowsett M, Easty GC, Easty DM, Neville AM: Breast-cancer osteolysis, bone metastases, and anti-osteolytic effect of aspirin. Lancet. 1976, 307: 608-610. 10.1016/S0140-6736(76)90416-5. 10.1016/S0140-6736(76)90416-5

    Article  Google Scholar 

  76. Sung S, et al: Overexpression of cyclooxygenase-2 in NCI-H292 human alveolar epithelial carcinoma cells: Roles of p38 MAPK, ERK-1/2, and PI3K/PKB signaling proteins. J Cell Biochem. 2011, 112: 3015-3024. 10.1002/jcb.23226

    Article  CAS  PubMed  Google Scholar 

  77. Kim BH, et al: Cyclooxygenase-2 overexpression in chronic inflammation associated with benign prostatic hyperplasia: is it related to apoptosis and angiogenesis of prostate cancer?. Korean J Urol. 2011, 52: 253-259. 10.4111/kju.2011.52.4.253

    Article  PubMed Central  PubMed  Google Scholar 

  78. Kulkarni S, et al: Cyclooxygenase-2 Is Overexpressed in Human Cervical Cancer. Clin Cancer Res. 2001, 7: 429-434.

    CAS  PubMed  Google Scholar 

  79. Wang M, He Y, Shi L, Shi C: Multivariate analysis by Cox proportional hazard model on prognosis of patient with epithelial ovarian cancer. Eur J Gynaecol Oncol. 2011, XXXII: 7.

    Google Scholar 

  80. Nie D: Cyclooxygenases and lipoxygenases in prostate and breast cancers. Front Biosci. 2007, 12: 1574-1585. 10.2741/2170

    Article  CAS  PubMed  Google Scholar 

  81. Park S-W: he influence of cyclooxygenase-1 expression on the efficacy of cyclooxygenase-2 inhibition in head and neck squamous cell carcinoma cell lines. Anti-Cancer Drugs. 22: 416-423. 10.1097/CAD.0b013e32834279f1.

  82. Langenbach R, Loftin CD, Lee C, Tiano H: Cyclooxygenase-deficient Mice: A Summary of Their Characteristics and Susceptibilities to Inflammation and Carcinogenesis. Ann N Y Acad Sci. 1999, 889: 52-61. 10.1111/j.1749-6632.1999.tb08723.x

    Article  CAS  PubMed  Google Scholar 

  83. Tiano HF, et al: Deficiency of Either Cyclooxygenase (COX)-1 or COX-2 Alters Epidermal Differentiation and Reduces Mouse Skin Tumorigenesis. Cancer Res. 2002, 62: 3395-3401.

    CAS  PubMed  Google Scholar 

  84. Rundhaug JE, Mikulec C, Pavone A, Fischer SM: A role for cyclooxygenase-2 in ultraviolet light-induced skin carcinogenesis. Mol Carcinog. 2007, 46: 692-698. 10.1002/mc.20329

    Article  CAS  PubMed  Google Scholar 

  85. Müller-Decker K, et al: Transgenic cyclooxygenase-2 overexpression sensitizes mouse skin for carcinogenesis. Proc Natl Acad Sci. 2002, 99: 12483-12488. 10.1073/pnas.192323799

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  86. Liu H, et al: COX-2 expression is correlated with VEGF-C, lymphangiogenesis and lymph node metastasis in human cervical cancer. Microvasc Res. 2011, 82: 131-140. 10.1016/j.mvr.2011.04.011

    Article  CAS  PubMed  Google Scholar 

  87. Williams CS, Tsujii M, Reese J, Dey SK, DuBois RN: Host cyclooxygenase-2 modulates carcinoma growth. J Clin Invest. 2000, 105: 1589-1594. 10.1172/JCI9621

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Sales KJ, Boddy SC, Williams AR, Anderson RA, Jabbour HN: F-prostanoid receptor regulation of fibroblast growth factor 2 signaling in endometrial adenocarcinoma cells. Endocrinology. 2007, 148: 3635-3644. 10.1210/en.2006-1517

    Article  CAS  PubMed  Google Scholar 

  89. Chu J, Lloyd FL, Trifan OC, Knapp B, Rizzo MT: Potential Involvement of the Cyclooxygenase-2 Pathway in the Regulation of Tumor-associated Angiogenesis and Growth in Pancreatic Cancer1. Mol Cancer Ther. 2003, 2: 1-7. 10.1186/1476-4598-2-1

    CAS  PubMed  Google Scholar 

  90. Chuang HC, Kardosh A, Gaffney KJ, Petasis NA, Schonthal AH: COX-2 inhibition is neither necessary nor sufficient for celecoxib to suppress tumor cell proliferation and focus formation in vitro. Mol Cancer. 2008, 7: 38.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  91. Tegeder I, Pfeilschifter J, Geisslinger G: Cyclooxygenase-independent actions of cyclooxygenase inhibitors. FASEB J. 2001, 15: 2057-2072. 10.1096/fj.01-0390rev

    Article  CAS  PubMed  Google Scholar 

  92. Khromova N, Kopnin P, Rybko V, Kopnin BP: Downregulation of VEGF-C expression in lung and colon cancer cells decelerates tumor growth and inhibits metastasis via multiple mechanisms. Oncogene. 2012, 31: 1389-1397. 10.1038/onc.2011.330

    Article  CAS  PubMed  Google Scholar 

  93. Schwarz-Cruz-y-Celis A, : Cancer stem cells. Rev. 2011, 63: 179-186.

    CAS  Google Scholar 

  94. Halamka M, et al: Plasma levels of vascular endothelial growth factor during and after radiotherapy in combination with celecoxib in patients with advanced head and neck cancer. Oral Oncol. 2011, 47: 763-767. 10.1016/j.oraloncology.2011.05.009

    Article  CAS  PubMed  Google Scholar 

  95. Yao M, et al: Inhibition of Cyclooxygenase-2 by Rofecoxib Attenuates the Growth and Metastatic Potential of Colorectal Carcinoma in Mice. Cancer Res. 2003, 63: 586-592.

    CAS  PubMed  Google Scholar 

  96. Wang MT, Honn KV, Nie D: Cyclooxygenases, prostanoids, and tumor progression. Cancer Metastasis Rev. 2007, 26: 525-534. 10.1007/s10555-007-9096-5

    Article  CAS  PubMed  Google Scholar 

  97. Muller-Decker K, Furstenberger G: The cyclooxygenase-2-mediated prostaglandin signaling is causally related to epithelial carcinogenesis. Mol Carcinog. 2007, 46: 705-710. 10.1002/mc.20326

    Article  PubMed  CAS  Google Scholar 

  98. Nakanishi M, Gokhale V, Meuillet EJ, Rosenberg DW: mPGES-1 as a target for cancer suppression: A comprehensive invited review "Phospholipase A2 and lipid mediators". Biochimie. 2010, 92: 660-664. 10.1016/j.biochi.2010.02.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Menter DG, Schilsky RL, DuBois RN: Cyclooxygenase-2 and cancer treatment: understanding the risk should be worth the reward. Clin Cancer Res. 2010, 16: 1384-1390. 10.1158/1078-0432.CCR-09-0788

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Radmark O, Samuelsson B: Microsomal prostaglandin E synthase-1 and 5-lipoxygenase: potential drug targets in cancer. J Intern Med. 2010, 268: 5-14.

    CAS  PubMed  Google Scholar 

  101. Nie D, et al: Differential expression of thromboxane synthase in prostate carcinoma: role in tumor cell motility. Am J Pathol. 2004, 164: 429-439. 10.1016/S0002-9440(10)63133-1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Osawa T, et al: Prostacyclin receptor in tumor endothelial cells promotes angiogenesis in an autocrine manner. Cancer Sci. 2012, 103: 1038-1044. 10.1111/j.1349-7006.2012.02261.x

    Article  CAS  PubMed  Google Scholar 

  103. Wu J, et al: Prostaglandin E2 regulates renal cell carcinoma invasion through the EP4 receptor-Rap GTPase signal transduction pathway. J Biol Chem. 2011, 286: 33954-33962. 10.1074/jbc.M110.187344

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Timoshenko AV, Xu G, Chakrabarti S, Lala PK, Chakraborty C: Role of prostaglandin E2 receptors in migration of murine and human breast cancer cells. Exp Cell Res. 2003, 289: 265-274. 10.1016/S0014-4827(03)00269-6

    Article  CAS  PubMed  Google Scholar 

  105. Yang SF, et al: Prostaglandin E2/EP1 signaling pathway enhances intercellular adhesion molecule 1 (ICAM-1) expression and cell motility in oral cancer cells. J Biol Chem. 2010, 285: 29808-29816. 10.1074/jbc.M110.108183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Ma X, et al: Prostaglandin E receptor EP1 suppresses breast cancer metastasis and is linked to survival differences and cancer disparities. Mol Cancer Res. 2010, 8: 1310-1318. 10.1158/1541-7786.MCR-10-0003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Hu S, et al: Involvement of the prostaglandin E receptor EP2 in paeoniflorin-induced human hepatoma cell apoptosis. Anticancer Drugs. 2013, 24: 140-149. 10.1097/CAD.0b013e32835a4dac

    Article  CAS  PubMed  Google Scholar 

  108. Holt D, Ma X, Kundu N, Fulton A: Prostaglandin E(2) (PGE (2)) suppresses natural killer cell function primarily through the PGE(2) receptor EP4. Cancer Immunol Immunother. 2011, 60: 1577-1586. 10.1007/s00262-011-1064-9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Chen Y, Perussia B, Campbell KS: Prostaglandin D2 suppresses human NK cell function via signaling through D prostanoid receptor. J Immunol. 2007, 179: 2766-2773.

    Article  CAS  PubMed  Google Scholar 

  110. Murata T, et al: Role of prostaglandin D2 receptor DP as a suppressor of tumor hyperpermeability and angiogenesis in vivo. Proc Natl Acad Sci USA. 2008, 105: 20009-20014. 10.1073/pnas.0805171105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Wang S, Yang Q, Fung KM, Lin HK: AKR1C2 and AKR1C3 mediated prostaglandin D2 metabolism augments the PI3K/Akt proliferative signaling pathway in human prostate cancer cells. Mol Cell Endocrinol. 2008, 289: 60-66. 10.1016/j.mce.2008.04.004

    Article  CAS  PubMed  Google Scholar 

  112. Keightley MC, Sales KJ, Jabbour HN: PGF2alpha-F-prostanoid receptor signalling via ADAMTS1 modulates epithelial cell invasion and endothelial cell function in endometrial cancer. BMC Cancer. 2010, 10: 488. 10.1186/1471-2407-10-488

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  113. Sales KJ, et al: A novel angiogenic role for prostaglandin F2alpha-FP receptor interaction in human endometrial adenocarcinomas. Cancer Res. 2005, 65: 7707-7716.

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Schirner M, Kraus C, Lichtner RB, Schneider MR, Hildebrand M: Tumor metastasis inhibition with the prostacyclin analogue cicaprost depends on discontinuous plasma peak levels. Prostaglandins Leukot Essent Fatty Acids. 1998, 58: 311-317. 10.1016/S0952-3278(98)90041-2

    Article  CAS  PubMed  Google Scholar 

  115. Li X, Tai HH: Activation of thromboxane A(2) receptors induces orphan nuclear receptor Nurr1 expression and stimulates cell proliferation in human lung cancer cells. Carcinogenesis. 2009, 30: 1606-1613. 10.1093/carcin/bgp161

    Article  PubMed  CAS  Google Scholar 

  116. Turner EC, et al: Identification of an interaction between the TPalpha and TPbeta isoforms of the human thromboxane A2 receptor with protein kinase C-related kinase (PRK) 1: implications for prostate cancer. J Biol Chem. 2011, 286: 15440-15457. 10.1074/jbc.M110.181180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  117. Moussa O, et al: Novel role of thromboxane receptors beta isoform in bladder cancer pathogenesis. Cancer Res. 2008, 68: 4097-4104. 10.1158/0008-5472.CAN-07-6560

    Article  CAS  PubMed  Google Scholar 

  118. Nie D, et al: Thromboxane A2 receptors in prostate carcinoma: expression and its role in regulating cell motility via small GTPase Rho. Cancer Res. 2008, 68: 115-121. 10.1158/0008-5472.CAN-07-1018

    Article  CAS  PubMed  Google Scholar 

  119. Liu X-H, Yao S, Kirschenbaum A, Levine AC: NS398, a Selective Cyclooxygenase-2 Inhibitor, Induces Apoptosis and Down-Regulates bcl-2 Expression in LNCaP Cells. Cancer Res. 1998, 58: 4245-4249.

    CAS  PubMed  Google Scholar 

  120. Xue W-P, et al: Phase I clinical trial of nasopharyngeal radiotherapy and concurrent celecoxib for patients with locoregionally advanced nasopharyngeal carcinoma. Oral Oncol. 2011, 47: 753-757. 10.1016/j.oraloncology.2011.06.002

    Article  PubMed  Google Scholar 

  121. Seiz M, et al: Far-distant metastases along the CSF pathway of glioblastoma multiforme during continuous low-dose chemotherapy with temozolomide and celecoxib. Neurosurg Rev. 2010, 33: 375-381. 10.1007/s10143-010-0253-x

    Article  PubMed  Google Scholar 

  122. Mao JT, et al: Lung cancer chemoprevention with celecoxib in former smokers. Cancer Prevention Res. 2011, 4: 984-993. 10.1158/1940-6207.CAPR-11-0078. 10.1158/1940-6207.CAPR-11-0078

    Article  CAS  Google Scholar 

  123. Koch A, et al: Effect of celecoxib on survival in patients with advanced non-small cell lung cancer: A double blind randomised clinical phase III trial (CYCLUS study) by the Swedish Lung Cancer Study Group. Eur J Cancer. 2011, 47: 1546-1555. 10.1016/j.ejca.2011.03.035

    Article  CAS  PubMed  Google Scholar 

  124. Vinogradova Y, Coupland C, Hippisley-Cox J: Exposure to cyclooxygenase-2 inhibitors and risk of cancer: nested case–control studies. Br J Cancer. 2011, 105: 452-459. 10.1038/bjc.2011.252

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. Wang J, et al: Prostacyclin administration as a beneficial supplement to the conventional cancer chemotherapy. Med Hypotheses. 2011, 76: 695-696. 10.1016/j.mehy.2011.01.036

    Article  CAS  PubMed  Google Scholar 

  126. Cuneo KC, Fu A, Osusky KL, Geng L: Effects of vascular endothelial growth factor receptor inhibitor SU5416 and prostacyclin on murine lung metastasis. Anticancer Drugs. 2007, 18: 349-355. 10.1097/CAD.0b013e328011fdab

    Article  CAS  PubMed  Google Scholar 

  127. Griffoni C, et al: Selective inhibition of prostacyclin synthase activity by rofecoxib. J Cell Mol Med. 2007, 11: 327-338. 10.1111/j.1582-4934.2007.00021.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  128. Nakae K, et al: A prostacyclin receptor antagonist inhibits the sensitized release of substance P from rat sensory neurons. J Pharmacol Exp Ther. 2005, 315: 1136-1142. 10.1124/jpet.105.091967

    Article  CAS  PubMed  Google Scholar 

  129. Kaneshiro T, et al: Inhibition of prostaglandin E(2) signaling through the EP(1) receptor does not affect prostacyclin production in human endothelial cells. Prostaglandins Other Lipid Mediat. 2009, 90: 31-36. 10.1016/j.prostaglandins.2009.07.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  130. Ikawa Y, Fujino H, Otake S, Murayama T: Indomethacin antagonizes EP(2) prostanoid receptor activation in LS174T human colon cancer cells. Eur J Pharmacol. 2012, 680: 16-21. 10.1016/j.ejphar.2012.01.033

    Article  CAS  PubMed  Google Scholar 

  131. Koeberle A, et al: Green tea epigallocatechin-3-gallate inhibits microsomal prostaglandin E(2) synthase-1. Biochem Biophys Res Commun. 2009, 388: 350-354. 10.1016/j.bbrc.2009.08.005

    Article  CAS  PubMed  Google Scholar 

  132. Hardtner C, Multhoff G, Falk W, Radons J: (−)-Epigallocatechin-3-gallate, a green tea-derived catechin, synergizes with celecoxib to inhibit IL-1-induced tumorigenic mediators by human pancreatic adenocarcinoma cells Colo357. Eur J Pharmacol. 2012, 684: 36-43. 10.1016/j.ejphar.2012.03.039

    Article  PubMed  CAS  Google Scholar 

  133. Watts IS, Wharton KA, White BP, Lumley P: Thromboxane (Tx) A2 receptor blockade and TxA2 synthase inhibition alone and in combination: comparison of anti-aggregatory efficacy in human platelets. Br J Pharmacol. 1991, 102: 497-505. 10.1111/j.1476-5381.1991.tb12200.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  134. Chouinard ML, et al: Pharmacokinetics and biochemical efficacy of pirmagrel, a thromboxane synthase inhibitor, in renal allograft recipients. Clin Pharmacol Ther. 1992, 52: 597-604. 10.1038/clpt.1992.197

    Article  CAS  PubMed  Google Scholar 

  135. Vermylen J, et al: Thromboxane synthetase inhibition as antithrombotic strategy. Lancet. 1981, 1: 1073-1075.

    Article  CAS  PubMed  Google Scholar 

  136. Suehiro T, et al: Thromboxane A2 in preservation-reperfusion injury: the effect of thromboxane A2 synthetase inhibitor. J Surg Res. 1996, 62: 216-223. 10.1006/jsre.1996.0198

    Article  CAS  PubMed  Google Scholar 

  137. Oketani K, Inoue T, Murakami M: Effect of E3040, an inhibitor of 5-lipoxygenase and thromboxane synthase, on rat bowel damage induced by lipopolysaccharide. Eur J Pharmacol. 2001, 427: 159-166. 10.1016/S0014-2999(01)01234-1

    Article  CAS  PubMed  Google Scholar 

  138. Shi H, et al: Effect of thromboxane A2 inhibitors on allergic pulmonary inflammation in mice. Eur Respir J. 1998, 11: 624-629.

    CAS  PubMed  Google Scholar 

  139. Francis HP, Greenham SJ, Patel UP, Thompson AM, Gardiner PJ: BAY u3405 an antagonist of thromboxane A2- and prostaglandin D2-induced bronchoconstriction in the guinea-pig. Br J Pharmacol. 1991, 104: 596-602. 10.1111/j.1476-5381.1991.tb12475.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  140. Navarro-Nunez L, et al: Apigenin inhibits platelet adhesion and thrombus formation and synergizes with aspirin in the suppression of the arachidonic acid pathway. J Agric Food Chem. 2008, 56: 2970-2976. 10.1021/jf0723209

    Article  CAS  PubMed  Google Scholar 

  141. Guerrero JA, et al: Flavonoids inhibit the platelet TxA(2) signalling pathway and antagonize TxA(2) receptors (TP) in platelets and smooth muscle cells. Br J Clin Pharmacol. 2007, 64: 133-144. 10.1111/j.1365-2125.2007.02881.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  142. Nakahata N: Thromboxane A2: physiology/pathophysiology, cellular signal transduction and pharmacology. Pharmacol Ther. 2008, 118: 18-35. 10.1016/j.pharmthera.2008.01.001

    Article  CAS  PubMed  Google Scholar 

  143. Sung YM, He G, Fischer SM: Lack of Expression of the EP2 but not EP3 Receptor for Prostaglandin E2 Results in Suppression of Skin Tumor Development. Cancer Res. 2005, 65: 9304-9311. 10.1158/0008-5472.CAN-05-1015

    Article  CAS  PubMed  Google Scholar 

  144. Shoji Y, et al: Prostaglandin E receptor EP3 deficiency modifies tumor outcome in mouse two-stage skin carcinogenesis. Carcinogenesis. 2005, 26: 2116-2122. 10.1093/carcin/bgi193

    Article  CAS  PubMed  Google Scholar 

  145. Majima M, Amano H, Hayashi I: Prostanoid receptor signaling relevant to tumor growth and angiogenesis. Trends Pharmacol Sci. 2003, 24: 524-529. 10.1016/j.tips.2003.08.005

    Article  CAS  PubMed  Google Scholar 

  146. Sales KJ, Milne SA, Williams ARW, Anderson RA, Jabbour HN: Expression, localization, and signaling of prostaglandin F2α receptor in human endometrial adenocarcinoma: regulation of proliferation by activation of the epidermal growth factor receptor and mitogen-activated protein kinase signaling pathways. J Clin Endocrinol Metabol. 2004, 89: 986-993. 10.1210/jc.2003-031434. 10.1210/jc.2003-031434

    Article  CAS  Google Scholar 

  147. Clària J, Serhan CN: Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell-leukocyte interactions. Proc Natl Acad Sci. 1995, 92: 9475-9479. 10.1073/pnas.92.21.9475

    Article  PubMed Central  PubMed  Google Scholar 

  148. Xu XC, Liang Z, Song S, Menter D, Subbarayan V, Iyengar S, Tang DG, Lippman SM, : Reduced 15S-lipoxygenase-2 expression in esophageal cancer specimens and cells and upregulation in vitro by the cyclooxygenase-2 inhibitor, NS398. Neoplasia. 2003, 5: 121-127.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  149. Mao JT, et al: Modulation of pulmonary leukotriene B4 production by cyclooxygenase-2 inhibitors and lipopolysaccharide. Clin Cancer Res. 2004, 10: 6872-6878. 10.1158/1078-0432.CCR-04-0945

    Article  CAS  PubMed  Google Scholar 

  150. Gao Y, Yokota R, Tang S, Ashton AW, Ware JA: Reversal of angiogenesis in vitro, induction of apoptosis, and inhibition of AKT phosphorylation in endothelial cells by thromboxane A(2). Circ Res. 2000, 87: 739-745. 10.1161/01.RES.87.9.739

    Article  CAS  PubMed  Google Scholar 

  151. Williams CD, et al: A high ratio of dietary n-6/n-3 polyunsaturated fatty acids is associated with increased risk of prostate cancer. Nutr Res. 2011, 31: 1-8.

    Article  CAS  PubMed  Google Scholar 

  152. Sapieha P, et al: 5-Lipoxygenase Metabolite 4-HDHA Is a Mediator of the Antiangiogenic Effect of ω-3 Polyunsaturated Fatty Acids. Sci Transl Med. 2011, 3: 69ra12. 10.1126/scitranslmed.3001571

    Article  PubMed Central  PubMed  CAS  Google Scholar 


Page 2

Biosynthesis and activities of prostaglandins and sites of NSAIDs actions. Cyclooxygenase metabolism of arachidonic acid can lead to the formation of prostaglandins that exert a variety of biological activities through their respective cognate receptors. The involvement of prostanoid receptors in cancer is also shown. Abbreviations: COX, cyclooxygenase; PG, prostaglandin; PLA2, phospholipase 2; TXA2, thromboxane A2; TP, thromboxane A2 receptor; EP, prostaglandin E2 receptor; IP, prostacyclin (PGI2) receptor; DP, prostaglandin D2 receptor; FP, prostaglandin F2 receptor; NSAIDs, non-steroid anti-inflammatory drugs.