What are endoplasmic reticulum similar to in real life?

What are endoplasmic reticulum similar to in real life?
The endoplasmic reticulum serves many general functions, including the folding of protein molecules in sacs called cisternae and the transport of these synthesized proteins to the Golgi Apparatus, which further processes them for transport to their final destinations: lysosomes, the plasma membrane or for secretion. Encyclopedia Brittanica/HowStuffWorks

A eukaryotic cell is sort of like a quaint little self-sustaining village, home to a variety of different organelles providing valuable services that benefit the entire town: a bakery, a mechanic, a grocery store and a mayor. Cells have little stuff-doing structures called organelles that serve specific purposes just like the specialists in a community.

The endoplasmic reticulum, found in eukaryotic cells, is a network of tubes or flat sacs — kind of like a labyrinth of membranes — that serves as the factory of the cell, manufacturing and packaging up proteins and lipids to send around the cell, and even outside of it. About half of the total membrane surface area in an animal cell is found in the endoplasmic reticulum. Which molecules the endoplasmic reticulum makes depends a lot on what kind of cell it is — for instance, the endoplasmic reticulum in muscle cells store a lot of calcium ions because muscle cells need these to make muscles contract, and organs in the digestive system tend to have cells with an endoplasmic reticulum that manufactures a variety of different kinds of cholesterol.

There are two different regions to the endoplasmic reticulum — rough and smooth — and both are found in both plant and animal cells, and although they appear to be separate when you look at them under the microscope, they're really just different compartments of the same organelle.

The rough endoplasmic reticulum is composed of an interconnected network of flattened, membrane-enclosed sacs known as cisternae and it appears bumpy because it's studded with little molecules called ribosomes that assemble proteins out of polypeptide chains and package them up to be used by other organelles or membranes within the cell itself or even exported outside of it. The rough endoplasmic reticulum provides quality control for these proteins and further organizes them for shipment out of the factory and to their final destination.

The smooth endoplasmic reticulum lacks ribosomes, so it appears more tubular and less bumpy under a microscope. Its job, much like that of the rough endoplasmic reticulum, is to manufacture and package molecules, but the smooth endoplasmic reticulum also makes lipids and some steroid hormones, and in some types of cells it metabolizes some sugars that attach to the outside of it. Liver cells contain lots of smooth endoplasmic reticulum because the liver plays a big role in detoxification. So, if you've had a few too many glasses of wine, it's the smooth endoplasmic reticulum in your liver that's helping move things along the next morning.

1. Reid DW, Nicchitta CV. Diversity and selectivity in mRNA translation on the endoplasmic reticulum. Nat Rev Mol Cell Biol. 2015;16(4):221–231. [PMC free article] [PubMed] [Google Scholar]

2. Rapoport TA. Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature. 2007;450(7170):663–669. doi: 10.1038/nature06384. [PubMed] [CrossRef] [Google Scholar]

3. Braakman I, Hebert DN. Protein folding in the endoplasmic reticulum. Cold Spring Harb Perspect Biol. 2013;5(5):a013201. doi: 10.1101/cshperspect.a013201. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

4. Fagone P, Jackowski S. Membrane phospholipid synthesis and endoplasmic reticulum function. J Lipid Res. 2009;50(Suppl):S311–S316. [PMC free article] [PubMed] [Google Scholar]

5. Hebert DN, Garman SC, Molinari M. The glycan code of the endoplasmic reticulum: asparagine-linked carbohydrates as protein maturation and quality-control tags. Trends Cell Biol. 2005;15(7):364–370. doi: 10.1016/j.tcb.2005.05.007. [PubMed] [CrossRef] [Google Scholar]

6. Clapham DE. Calcium signaling. Cell. 2007;131(6):1047–1058. doi: 10.1016/j.cell.2007.11.028. [PubMed] [CrossRef] [Google Scholar]

7. Westrate LM, Lee JE, Prinz WA, Voeltz GK. Form follows function: the importance of endoplasmic reticulum shape. Annu Rev Biochem. 2015;84:791–811. doi: 10.1146/annurev-biochem-072711-163501. [PubMed] [CrossRef] [Google Scholar]

8. Jan CH, Williams CC, Weissman JS. Principles of ER cotranslational translocation revealed by proximity-specific ribosome profiling. Science. 2014;346(6210):1257521. doi: 10.1126/science.1257521. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Walter P, Blobel G. Translocation of proteins across the endoplasmic reticulum. II. Signal recognition protein (SRP) mediates the selective binding to microsomal membranes of in-vitro-assembled polysomes synthesizing secretory protein. J Cell Biol. 1981;91(2 Pt 1):551–556. doi: 10.1083/jcb.91.2.551. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Walter P, Ibrahimi I, Blobel G. Translocation of proteins across the endoplasmic reticulum. I. Signal recognition protein (SRP) binds to in-vitro-assembled polysomes synthesizing secretory protein. J Cell Biol. 1981;91(2 Pt 1):545–550. doi: 10.1083/jcb.91.2.545. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Gilmore R, Blobel G, Walter P. Protein translocation across the endoplasmic reticulum. I. Detection in the microsomal membrane of a receptor for the signal recognition particle. J Cell Biol. 1982;95(2 Pt 1):463–469. doi: 10.1083/jcb.95.2.463. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. Meyer DI, Krause E, Dobberstein B. Secretory protein translocation across membranes-the role of the “docking protein’ Nature. 1982;297(5868):647–650. doi: 10.1038/297647a0. [PubMed] [CrossRef] [Google Scholar]

13. Deshaies RJ, Sanders SL, Feldheim DA, Schekman R. Assembly of yeast Sec proteins involved in translocation into the endoplasmic reticulum into a membrane-bound multisubunit complex. Nature. 1991;349(6312):806–808. doi: 10.1038/349806a0. [PubMed] [CrossRef] [Google Scholar]

14. Evans EA, Gilmore R, Blobel G. Purification of microsomal signal peptidase as a complex. Proc Natl Acad Sci USA. 1986;83(3):581–585. doi: 10.1073/pnas.83.3.581. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Blobel G. Intracellular protein topogenesis. Proc Natl Acad Sci U S A. 1980;77(3):1496–1500. doi: 10.1073/pnas.77.3.1496. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Seiser RM, Nicchitta CV. The fate of membrane-bound ribosomes following the termination of protein synthesis. J Biol Chem. 2000;275(43):33820–33827. doi: 10.1074/jbc.M004462200. [PubMed] [CrossRef] [Google Scholar]

17. Potter MD, Nicchitta CV. Regulation of ribosome detachment from the mammalian endoplasmic reticulum membrane. J Biol Chem. 2000;275(43):33828–33835. doi: 10.1074/jbc.M005294200. [PubMed] [CrossRef] [Google Scholar]

18. Potter MD, Nicchitta CV. Endoplasmic reticulum-bound ribosomes reside in stable association with the translocon following termination of protein synthesis. J Biol Chem. 2002;277(26):23314–23320. doi: 10.1074/jbc.M202559200. [PubMed] [CrossRef] [Google Scholar]

19. Jagannathan S, Reid DW, Cox AH, Nicchitta CV. De novo translation initiation on membrane-bound ribosomes as a mechanism for localization of cytosolic protein mRNAs to the endoplasmic reticulum. RNA. 2014;20(10):1489–1498. doi: 10.1261/rna.045526.114. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Cui XA, Zhang H, Palazzo AF. p180 promotes the ribosome-independent localization of a subset of mRNA to the endoplasmic reticulum. PLoS Biol. 2012;10(5):e1001336. doi: 10.1371/journal.pbio.1001336. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. van der Zand A, Gent J, Braakman I, Tabak HF. Biochemically distinct vesicles from the endoplasmic reticulum fuse to form peroxisomes. Cell. 2012;149(2):397–409. doi: 10.1016/j.cell.2012.01.054. [PubMed] [CrossRef] [Google Scholar]

22. Hartl FU, Hayer-Hartl M. Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol. 2009;16(6):574–581. doi: 10.1038/nsmb.1591. [PubMed] [CrossRef] [Google Scholar]

23. Ruggiano A, Foresti O, Carvalho P. Quality control: eR-associated degradation: protein quality control and beyond. J Cell Biol. 2014;204(6):869–879. doi: 10.1083/jcb.201312042. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Ryno LM, Wiseman RL, Kelly JW. Targeting unfolded protein response signaling pathways to ameliorate protein misfolding diseases. Curr Opin Chem Biol. 2013;17(3):346–352. doi: 10.1016/j.cbpa.2013.04.009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. Glick BS, Nakano A. Membrane traffic within the Golgi apparatus. Annu Rev Cell Dev Biol. 2009;25:113–132. doi: 10.1146/annurev.cellbio.24.110707.175421. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Appenzeller-Herzog C, Hauri HP. The ER-Golgi intermediate compartment (ERGIC): in search of its identity and function. J Cell Sci. 2006;119(Pt 11):2173–2183. doi: 10.1242/jcs.03019. [PubMed] [CrossRef] [Google Scholar]

27. Guo Y, Sirkis DW, Schekman R. Protein Sorting at the trans-Golgi network. Annu Rev Cell Dev Biol. 2014;30:169–206. doi: 10.1146/annurev-cellbio-100913-013012. [PubMed] [CrossRef] [Google Scholar]

28. Jaffe LF. Sources of calcium in egg activation: a review and hypothesis. Dev Biol. 1983;99(2):265–276. doi: 10.1016/0012-1606(83)90276-2. [PubMed] [CrossRef] [Google Scholar]

29. Eisen A, Reynolds GT. Source and sinks for the calcium released during fertilization of single sea urchin eggs. J Cell Biol. 1985;100(5):1522–1527. doi: 10.1083/jcb.100.5.1522. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Samtleben S, Jaepel J, Fecher C, Andreska T, Rehberg M, Blum R. Direct imaging of ER calcium with targeted-esterase induced dye loading (TED) J Vis Exp. 2013;75:e50317. [PMC free article] [PubMed] [Google Scholar]

31. Oude Weernink PA, Han L, Jakobs KH, Schmidt M. Dynamic phospholipid signaling by G protein-coupled receptors. Biochim Biophys Acta. 2007;1768(4):888–900. doi: 10.1016/j.bbamem.2006.09.012. [PubMed] [CrossRef] [Google Scholar]

32. Endo M. Calcium-induced calcium release in skeletal muscle. Physiol Rev. 2009;89(4):1153–1176. doi: 10.1152/physrev.00040.2008. [PubMed] [CrossRef] [Google Scholar]

33. Fill M, Copello JA. Ryanodine receptor calcium release channels. Physiol Rev. 2002;82(4):893–922. doi: 10.1152/physrev.00013.2002. [PubMed] [CrossRef] [Google Scholar]

34. Putney JW., Jr Capacitative calcium entry: sensing the calcium stores. J Cell Biol. 2005;169(3):381–382. doi: 10.1083/jcb.200503161. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

35. Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature. 2006;441(7090):179–185. doi: 10.1038/nature04702. [PubMed] [CrossRef] [Google Scholar]

36. Zhang SL, Yeromin AV, Zhang XH, Yu Y, Safrina O, Penna A, Roos J, Stauderman KA, Cahalan MD. Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity. Proc Natl Acad Sci USA. 2006;103(24):9357–9362. doi: 10.1073/pnas.0603161103. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Parekh AB, Penner R. Store depletion and calcium influx. Physiol Rev. 1997;77(4):901–930. [PubMed] [Google Scholar]

38. Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol. 2005;169(3):435–445. doi: 10.1083/jcb.200502019. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

39. Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature. 2005;437(7060):902–905. doi: 10.1038/nature04147. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Gilkey JC, Jaffe LF, Ridgway EB, Reynolds GT. A free calcium wave traverses the activating egg of the medaka, Oryzias latipes. J Cell Biol. 1978;76(2):448–466. doi: 10.1083/jcb.76.2.448. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Cheng H, Lederer WJ, Cannell MB. Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science. 1993;262(5134):740–744. doi: 10.1126/science.8235594. [PubMed] [CrossRef] [Google Scholar]

42. Busa WB, Nuccitelli R. An elevated free cytosolic Ca2+ wave follows fertilization in eggs of the frog, Xenopus laevis. J Cell Biol. 1985;100(4):1325–1329. doi: 10.1083/jcb.100.4.1325. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Mulkey RM, Zucker RS. Action potentials must admit calcium to evoke transmitter release. Nature. 1991;350(6314):153–155. doi: 10.1038/350153a0. [PubMed] [CrossRef] [Google Scholar]

44. English AR, Voeltz GK. Endoplasmic reticulum structure and interconnections with other organelles. Cold Spring Harb Perspect Biol. 2013;5(4):a013227. doi: 10.1101/cshperspect.a013227. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

45. Friedman JR, Voeltz GK. The ER in 3D: a multifunctional dynamic membrane network. Trends Cell Biol. 2011;21(12):709–717. doi: 10.1016/j.tcb.2011.07.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. English AR, Zurek N, Voeltz GK. Peripheral ER structure and function. Curr Opin Cell Biol. 2009;21(4):596–602. doi: 10.1016/j.ceb.2009.04.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Shibata Y, Voeltz GK, Rapoport TA. Rough sheets and smooth tubules. Cell. 2006;126(3):435–439. doi: 10.1016/j.cell.2006.07.019. [PubMed] [CrossRef] [Google Scholar]

48. Hu J, Prinz WA, Rapoport TA. Weaving the web of ER tubules. Cell. 2011;147(6):1226–1231. doi: 10.1016/j.cell.2011.11.022. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Bernales S, McDonald KL, Walter P. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol. 2006;4(12):e423. doi: 10.1371/journal.pbio.0040423. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Terasaki M, Shemesh T, Kasthuri N, Klemm RW, Schalek R, Hayworth KJ, Hand AR, Yankova M, Huber G, Lichtman JW, Rapoport TA, Kozlov MM. Stacked endoplasmic reticulum sheets are connected by helicoidal membrane motifs. Cell. 2013;154(2):285–296. doi: 10.1016/j.cell.2013.06.031. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Shibata Y, Shemesh T, Prinz WA, Palazzo AF, Kozlov MM, Rapoport TA. Mechanisms determining the morphology of the peripheral ER. Cell. 2010;143(5):774–788. doi: 10.1016/j.cell.2010.11.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. West M, Zurek N, Hoenger A, Voeltz GK. A 3D analysis of yeast ER structure reveals how ER domains are organized by membrane curvature. J Cell Biol. 2011;193(2):333–346. doi: 10.1083/jcb.201011039. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Staehelin LA. The plant ER: a dynamic organelle composed of a large number of discrete functional domains. Plant J. 1997;11(6):1151–1165. doi: 10.1046/j.1365-313X.1997.11061151.x. [PubMed] [CrossRef] [Google Scholar]

54. Baumann O, Walz B. Endoplasmic reticulum of animal cells and its organization into structural and functional domains. Int Rev Cytol. 2001;205:149–214. doi: 10.1016/S0074-7696(01)05004-5. [PubMed] [CrossRef] [Google Scholar]

55. Block BA, Imagawa T, Campbell KP, Franzini-Armstrong C. Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J Cell Biol. 1988;107(6 Pt 2):2587–2600. doi: 10.1083/jcb.107.6.2587. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Takeshima H, Komazaki S, Nishi M, Iino M, Kangawa K. Junctophilins: a novel family of junctional membrane complex proteins. Mol Cell. 2000;6(1):11–22. [PubMed] [Google Scholar]

57. Voeltz GK, Prinz WA, Shibata Y, Rist JM, Rapoport TA. A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell. 2006;124(3):573–586. doi: 10.1016/j.cell.2005.11.047. [PubMed] [CrossRef] [Google Scholar]

58. Shibata Y, Voss C, Rist JM, Hu J, Rapoport TA, Prinz WA, Voeltz GK. The reticulon and DP1/Yop1p proteins form immobile oligomers in the tubular endoplasmic reticulum. J Biol Chem. 2008;283(27):18892–18904. doi: 10.1074/jbc.M800986200. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. De Craene JO, Coleman J, Estrada de Martin P, Pypaert M, Anderson S, Yates JR, 3rd, Ferro-Novick S, Novick P. Rtn1p is involved in structuring the cortical endoplasmic reticulum. Mol Biol Cell. 2006;17(7):3009–3020. doi: 10.1091/mbc.E06-01-0080. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Anderson DJ, Hetzer MW. Reshaping of the endoplasmic reticulum limits the rate for nuclear envelope formation. J Cell Biol. 2008;182(5):911–924. doi: 10.1083/jcb.200805140. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Hu J, Shibata Y, Zhu PP, Voss C, Rismanchi N, Prinz WA, Rapoport TA, Blackstone C. A class of dynamin-like GTPases involved in the generation of the tubular ER network. Cell. 2009;138(3):549–561. doi: 10.1016/j.cell.2009.05.025. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Hu J, Shibata Y, Voss C, Shemesh T, Li Z, Coughlin M, Kozlov MM, Rapoport TA, Prinz WA. Membrane proteins of the endoplasmic reticulum induce high-curvature tubules. Science. 2008;319(5867):1247–1250. doi: 10.1126/science.1153634. [PubMed] [CrossRef] [Google Scholar]

63. Park SH, Zhu PP, Parker RL, Blackstone C. Hereditary spastic paraplegia proteins REEP1, spastin, and atlastin-1 coordinate microtubule interactions with the tubular ER network. J Clin Invest. 2010;120(4):1097–1110. doi: 10.1172/JCI40979. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Bian X, Klemm RW, Liu TY, Zhang M, Sun S, Sui X, Liu X, Rapoport TA, Hu J. Structures of the atlastin GTPase provide insight into homotypic fusion of endoplasmic reticulum membranes. Proc Natl Acad Sci USA. 2011;108(10):3976–3981. doi: 10.1073/pnas.1101643108. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Wang S, Romano FB, Field CM, Mitchison TJ, Rapoport TA. Multiple mechanisms determine ER network morphology during the cell cycle in Xenopus egg extracts. J Cell Biol. 2013;203(5):801–814. doi: 10.1083/jcb.201308001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

66. Byrnes LJ, Sondermann H. Structural basis for the nucleotide-dependent dimerization of the large G protein atlastin-1/SPG3A. Proc Natl Acad Sci USA. 2011;108(6):2216–2221. doi: 10.1073/pnas.1012792108. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

67. Orso G, Pendin D, Liu S, Tosetto J, Moss TJ, Faust JE, Micaroni M, Egorova A, Martinuzzi A, McNew JA, Daga A. Homotypic fusion of ER membranes requires the dynamin-like GTPase atlastin. Nature. 2009;460(7258):978–983. doi: 10.1038/nature08280. [PubMed] [CrossRef] [Google Scholar]

68. Dreier L, Rapoport TA. In vitro formation of the endoplasmic reticulum occurs independently of microtubules by a controlled fusion reaction. J Cell Biol. 2000;148(5):883–898. doi: 10.1083/jcb.148.5.883. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Turner MD, Plutner H, Balch WE. A Rab GTPase is required for homotypic assembly of the endoplasmic reticulum. J Biol Chem. 1997;272(21):13479–13483. doi: 10.1074/jbc.272.21.13479. [PubMed] [CrossRef] [Google Scholar]

70. Audhya A, Desai A, Oegema K. A role for Rab5 in structuring the endoplasmic reticulum. J Cell Biol. 2007;178(1):43–56. doi: 10.1083/jcb.200701139. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

71. English AR, Voeltz GK. Rab10 GTPase regulates ER dynamics and morphology. Nat Cell Biol. 2013;15(2):169–178. doi: 10.1038/ncb2647. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Gerondopoulos A, Bastos RN, Yoshimura S, Anderson R, Carpanini S, Aligianis I, Handley MT, Barr FA. Rab18 and a Rab18 GEF complex are required for normal ER structure. J Cell Biol. 2014;205(5):707–720. doi: 10.1083/jcb.201403026. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 2009;10(8):513–525. doi: 10.1038/nrm2728. [PubMed] [CrossRef] [Google Scholar]

74. Bahmanyar S, Biggs R, Schuh AL, Desai A, Muller-Reichert T, Audhya A, Dixon JE, Oegema K. Spatial control of phospholipid flux restricts endoplasmic reticulum sheet formation to allow nuclear envelope breakdown. Genes Dev. 2014;28(2):121–126. doi: 10.1101/gad.230599.113. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Lee C, Chen LB. Dynamic behavior of endoplasmic reticulum in living cells. Cell. 1998;54(1):37–46. doi: 10.1016/0092-8674(88)90177-8. [PubMed] [CrossRef] [Google Scholar]

76. Friedman JR, Webster BM, Mastronarde DN, Verhey KJ, Voeltz GK. ER sliding dynamics and ER-mitochondrial contacts occur on acetylated microtubules. J Cell Biol. 2010;190(3):363–375. doi: 10.1083/jcb.200911024. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Chen S, Desai T, McNew JA, Gerard P, Novick PJ, Ferro-Novick S. Lunapark stabilizes nascent three-way junctions in the endoplasmic reticulum. Proc Natl Acad Sci USA. 2015;112(2):418–423. doi: 10.1073/pnas.1423026112. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Chen S, Novick P, Ferro-Novick S. ER network formation requires a balance of the dynamin-like GTPase Sey1p and the Lunapark family member Lnp1p. Nat Cell Biol. 2012;14(7):707–716. doi: 10.1038/ncb2523. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Moriya K, Nagatoshi K, Noriyasu Y, Okamura T, Takamitsu E, Suzuki T, Utsumi T. Protein N-myristoylation plays a critical role in the endoplasmic reticulum morphological change induced by overexpression of protein Lunapark, an integral membrane protein of the endoplasmic reticulum. PLoS One. 2013;8(11):e78235. doi: 10.1371/journal.pone.0078235. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Puhka M, Vihinen H, Joensuu M, Jokitalo E. Endoplasmic reticulum remains continuous and undergoes sheet-to-tubule transformation during cell division in mammalian cells. J Cell Biol. 2007;179(5):895–909. doi: 10.1083/jcb.200705112. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Laneve P, Altieri F, Fiori ME, Scaloni A, Bozzoni I, Caffarelli E. Purification, cloning, and characterization of XendoU, a novel endoribonuclease involved in processing of intron-encoded small nucleolar RNAs in Xenopus laevis. J Biol Chem. 2003;278(15):13026–13032. doi: 10.1074/jbc.M211937200. [PubMed] [CrossRef] [Google Scholar]

82. Schwarz DS, Blower MD. The calcium-dependent ribonuclease XendoU promotes ER network formation through local RNA degradation. J Cell Biol. 2014;207(1):41–57. doi: 10.1083/jcb.201406037. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Seidel CW, Peck LJ. Purification of a calcium dependent ribonuclease from Xenopus laevis. Nucleic Acids Res. 1994;22(8):1456–1462. doi: 10.1093/nar/22.8.1456. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. Lorca T, Galas S, Fesquet D, Devault A, Cavadore JC, Doree M. Degradation of the proto-oncogene product p39mos is not necessary for cyclin proteolysis and exit from meiotic metaphase: requirement for a Ca(2+)-calmodulin dependent event. EMBO J. 1991;10(8):2087–2093. [PMC free article] [PubMed] [Google Scholar]

85. Sullivan KM, Busa WB, Wilson KL. Calcium mobilization is required for nuclear vesicle fusion in vitro: implications for membrane traffic and IP3 receptor function. Cell. 1993;73(7):1411–1422. doi: 10.1016/0092-8674(93)90366-X. [PubMed] [CrossRef] [Google Scholar]

86. Shibata Y, Hu J, Kozlov MM, Rapoport TA. Mechanisms shaping the membranes of cellular organelles. Annu Rev Cell Dev Biol. 2009;25:329–354. doi: 10.1146/annurev.cellbio.042308.113324. [PubMed] [CrossRef] [Google Scholar]

87. Senda T, Yoshinaga-Hirabayashi T. Intermembrane bridges within membrane organelles revealed by quick-freeze deep-etch electron microscopy. Anat Rec. 1998;251(3):339–345. doi: 10.1002/(SICI)1097-0185(199807)251:3<339::AID-AR9>3.0.CO;2-Q. [PubMed] [CrossRef] [Google Scholar]

88. Foster LJ, de Hoog CL, Zhang Y, Xie X, Mootha VK, Mann M. A mammalian organelle map by protein correlation profiling. Cell. 2006;125(1):187–199. doi: 10.1016/j.cell.2006.03.022. [PubMed] [CrossRef] [Google Scholar]

89. Nagaraj N, Wisniewski JR, Geiger T, Cox J, Kircher M, Kelso J, Paabo S, Mann M. Deep proteome and transcriptome mapping of a human cancer cell line. Mol Syst Biol. 2011;7:548. doi: 10.1038/msb.2011.81. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

90. Beck M, Schmidt A, Malmstroem J, Claassen M, Ori A, Szymborska A, Herzog F, Rinner O, Ellenberg J, Aebersold R. The quantitative proteome of a human cell line. Mol Syst Biol. 2011;7:549. doi: 10.1038/msb.2011.82. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

91. Klopfenstein DR, Kappeler F, Hauri HP. A novel direct interaction of endoplasmic reticulum with microtubules. EMBO J. 1998;17(21):6168–6177. doi: 10.1093/emboj/17.21.6168. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

92. Klopfenstein DR, Klumperman J, Lustig A, Kammerer RA, Oorschot V, Hauri HP. Subdomain-specific localization of CLIMP-63 (p63) in the endoplasmic reticulum is mediated by its luminal alpha-helical segment. J Cell Biol. 2001;153(6):1287–1300. doi: 10.1083/jcb.153.6.1287. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. Nikonov AV, Hauri HP, Lauring B, Kreibich G. Climp-63-mediated binding of microtubules to the ER affects the lateral mobility of translocon complexes. J Cell Sci. 2007;120(Pt 13):2248–2258. doi: 10.1242/jcs.008979. [PubMed] [CrossRef] [Google Scholar]

94. Ogawa-Goto K, Tanaka K, Ueno T, Kurata T, Sata T, Irie S. p180 is involved in the interaction between the endoplasmic reticulum and microtubules through a novel microtubule-binding and bundling domain. Mol Biol Cell. 2007;18(10):3741–3751. doi: 10.1091/mbc.E06-12-1125. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

95. Toyoshima I, Yu H, Steuer ER, Sheetz MP. Kinectin, a major kinesin-binding protein on ER. J Cell Biol. 1992;118(5):1121–1131. doi: 10.1083/jcb.118.5.1121. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

96. Allan V, Vale R. Movement of membrane tubules along microtubules in vitro: evidence for specialised sites of motor attachment. J Cell Sci. 1994;107(Pt 7):1885–1897. [PubMed] [Google Scholar]

97. Allan VJ, Vale RD. Cell cycle control of microtubule-based membrane transport and tubule formation in vitro. J Cell Biol. 1991;113(2):347–359. doi: 10.1083/jcb.113.2.347. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Lane JD, Allan VJ. Microtubule-based endoplasmic reticulum motility in Xenopus laevis: activation of membrane-associated kinesin during development. Mol Biol Cell. 1999;10(6):1909–1922. doi: 10.1091/mbc.10.6.1909. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Waterman-Storer CM, Gregory J, Parsons SF, Salmon ED. Membrane/microtubule tip attachment complexes (TACs) allow the assembly dynamics of plus ends to push and pull membranes into tubulovesicular networks in interphase Xenopus egg extracts. J Cell Biol. 1995;130(5):1161–1169. doi: 10.1083/jcb.130.5.1161. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

100. Waterman-Storer CM, Salmon ED. Endoplasmic reticulum membrane tubules are distributed by microtubules in living cells using three distinct mechanisms. Curr Biol. 1998;8(14):798–806. doi: 10.1016/S0960-9822(98)70321-5. [PubMed] [CrossRef] [Google Scholar]

101. Terasaki M, Chen LB, Fujiwara K. Microtubules and the endoplasmic reticulum are highly interdependent structures. J Cell Biol. 1986;103(4):1557–1568. doi: 10.1083/jcb.103.4.1557. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

102. Desai A, Mitchison TJ. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol. 1997;13:83–117. doi: 10.1146/annurev.cellbio.13.1.83. [PubMed] [CrossRef] [Google Scholar]

103. Guttinger S, Laurell E, Kutay U. Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nat Rev Mol Cell Biol. 2009;10(3):178–191. doi: 10.1038/nrm2641. [PubMed] [CrossRef] [Google Scholar]

104. Bobinnec Y, Marcaillou C, Morin X, Debec A. Dynamics of the endoplasmic reticulum during early development of Drosophila melanogaster. Cell Motil Cytoskeleton. 2003;54(3):217–225. doi: 10.1002/cm.10094. [PubMed] [CrossRef] [Google Scholar]

105. Poteryaev D, Squirrell JM, Campbell JM, White JG, Spang A. Involvement of the actin cytoskeleton and homotypic membrane fusion in ER dynamics in Caenorhabditis elegans. Mol Biol Cell. 2005;16(5):2139–2153. doi: 10.1091/mbc.E04-08-0726. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

106. McCullough S, Lucocq J. Endoplasmic reticulum positioning and partitioning in mitotic HeLa cells. J Anat. 2005;206(5):415–425. doi: 10.1111/j.1469-7580.2005.00407.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

107. Puhka M, Joensuu M, Vihinen H, Belevich I, Jokitalo E. Progressive sheet-to-tubule transformation is a general mechanism for endoplasmic reticulum partitioning in dividing mammalian cells. Mol Biol Cell. 2012;23(13):2424–2432. doi: 10.1091/mbc.E10-12-0950. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

108. Anderson DJ, Hetzer MW. Nuclear envelope formation by chromatin-mediated reorganization of the endoplasmic reticulum. Nat Cell Biol. 2007;9(10):1160–1166. doi: 10.1038/ncb1636. [PubMed] [CrossRef] [Google Scholar]

109. Lu L, Ladinsky MS, Kirchhausen T. Formation of the postmitotic nuclear envelope from extended ER cisternae precedes nuclear pore assembly. J Cell Biol. 2011;194(3):425–440. doi: 10.1083/jcb.201012063. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

110. Lu L, Ladinsky MS, Kirchhausen T. Cisternal organization of the endoplasmic reticulum during mitosis. Mol Biol Cell. 2009;20(15):3471–3480. doi: 10.1091/mbc.E09-04-0327. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

111. Olmos Y, Hodgson L, Mantell J, Verkade P, Carlton JG. ESCRT-III controls nuclear envelope reformation. Nature. 2015;522(7555):236–239. doi: 10.1038/nature14503. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

112. Vietri M, Schink KO, Campsteijn C, Wegner CS, Schultz SW, Christ L, Thoresen SB, Brech A, Raiborg C, Stenmark H. Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing. Nature. 2015;522(7555):231–235. doi: 10.1038/nature14408. [PubMed] [CrossRef] [Google Scholar]

114. Bian Y, Song C, Cheng K, Dong M, Wang F, Huang J, Sun D, Wang L, Ye M, Zou H. An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics. 2014;96:253–262. doi: 10.1016/j.jprot.2013.11.014. [PubMed] [CrossRef] [Google Scholar]

115. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 2006;127(3):635–648. doi: 10.1016/j.cell.2006.09.026. [PubMed] [CrossRef] [Google Scholar]

116. Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal. 2010;3(104):ra3. doi: 10.1126/scisignal.2000475. [PubMed] [CrossRef] [Google Scholar]

117. Rigbolt KT, Prokhorova TA, Akimov V, Henningsen J, Johansen PT, Kratchmarova I, Kassem M, Mann M, Olsen JV, Blagoev B. System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal. 2011;4(164):rs3. doi: 10.1126/scisignal.2001570. [PubMed] [CrossRef] [Google Scholar]

118. Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP. A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci USA. 2008;105(31):10762–10767. doi: 10.1073/pnas.0805139105. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

119. Daub H, Olsen JV, Bairlein M, Gnad F, Oppermann FS, Korner R, Greff Z, Keri G, Stemmann O, Mann M. Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell. 2008;31(3):438–448. doi: 10.1016/j.molcel.2008.07.007. [PubMed] [CrossRef] [Google Scholar]

120. Mayya V, Lundgren DH, Hwang SI, Rezaul K, Wu L, Eng JK, Rodionov V, Han DK. Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal. 2009;2(84):ra46. doi: 10.1126/scisignal.2000007. [PubMed] [CrossRef] [Google Scholar]

121. Vedrenne C, Klopfenstein DR, Hauri HP. Phosphorylation controls CLIMP-63-mediated anchoring of the endoplasmic reticulum to microtubules. Mol Biol Cell. 2005;16(4):1928–1937. doi: 10.1091/mbc.E04-07-0554. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

122. Grigoriev I, Gouveia SM, van der Vaart B, Demmers J, Smyth JT, Honnappa S, Splinter D, Steinmetz MO, Putney JW, Jr, Hoogenraad CC, Akhmanova A. STIM1 is a MT-plus-end-tracking protein involved in remodeling of the ER. Curr Biol. 2008;18(3):177–182. doi: 10.1016/j.cub.2007.12.050. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

123. Smyth JT, Beg AM, Wu S, Putney JW, Jr, Rusan NM. Phosphoregulation of STIM1 leads to exclusion of the endoplasmic reticulum from the mitotic spindle. Curr Biol. 2012;22(16):1487–1493. doi: 10.1016/j.cub.2012.05.057. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

124. Schlaitz AL, Thompson J, Wong CC, Yates JR, 3rd, Heald R. REEP3/4 ensure endoplasmic reticulum clearance from metaphase chromatin and proper nuclear envelope architecture. Dev Cell. 2013;26(3):315–323. doi: 10.1016/j.devcel.2013.06.016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

125. Vacquier VD. Dynamic changes of the egg cortex. Dev Biol. 1981;84(1):1–26. doi: 10.1016/0012-1606(81)90366-3. [PubMed] [CrossRef] [Google Scholar]

126. Whitaker M. Calcium at fertilization and in early development. Physiol Rev. 2006;86(1):25–88. doi: 10.1152/physrev.00023.2005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

127. Horner VL, Wolfner MF. Transitioning from egg to embryo: triggers and mechanisms of egg activation. Dev Dyn. 2008;237(3):527–544. doi: 10.1002/dvdy.21454. [PubMed] [CrossRef] [Google Scholar]

128. Perry AC, Verlhac MH. Second meiotic arrest and exit in frogs and mice. EMBO Rep. 2008;9(3):246–251. doi: 10.1038/embor.2008.22. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

129. Stricker SA. Structural reorganizations of the endoplasmic reticulum during egg maturation and fertilization. Semin Cell Dev Biol. 2006;17(2):303–313. doi: 10.1016/j.semcdb.2006.02.002. [PubMed] [CrossRef] [Google Scholar]

130. Terasaki M, Runft LL, Hand AR. Changes in organization of the endoplasmic reticulum during Xenopus oocyte maturation and activation. Mol Biol Cell. 2001;12(4):1103–1116. doi: 10.1091/mbc.12.4.1103. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

131. Kume S, Yamamoto A, Inoue T, Muto A, Okano H, Mikoshiba K. Developmental expression of the inositol 1,4,5-trisphosphate receptor and structural changes in the endoplasmic reticulum during oogenesis and meiotic maturation of Xenopus laevis. Dev Biol. 1997;182(2):228–239. doi: 10.1006/dbio.1996.8479. [PubMed] [CrossRef] [Google Scholar]

132. Henson JH, Beaulieu SM, Kaminer B, Begg DA. Differentiation of a calsequestrin-containing endoplasmic reticulum during sea urchin oogenesis. Dev Biol. 1990;142(2):255–269. doi: 10.1016/0012-1606(90)90347-L. [PubMed] [CrossRef] [Google Scholar]

133. Jaffe LA, Terasaki M. Structural changes in the endoplasmic reticulum of starfish oocytes during meiotic maturation and fertilization. Dev Biol. 1994;164(2):579–587. doi: 10.1006/dbio.1994.1225. [PubMed] [CrossRef] [Google Scholar]

134. Mehlmann LM, Terasaki M, Jaffe LA, Kline D. Reorganization of the endoplasmic reticulum during meiotic maturation of the mouse oocyte. Dev Biol. 1995;170(2):607–615. doi: 10.1006/dbio.1995.1240. [PubMed] [CrossRef] [Google Scholar]

135. FitzHarris G, Marangos P, Carroll J. Changes in endoplasmic reticulum structure during mouse oocyte maturation are controlled by the cytoskeleton and cytoplasmic dynein. Dev Biol. 2007;305(1):133–144. doi: 10.1016/j.ydbio.2007.02.006. [PubMed] [CrossRef] [Google Scholar]

136. Mendez R, Richter JD. Translational control by CPEB: a means to the end. Nat Rev Mol Cell Biol. 2001;2(7):521–529. doi: 10.1038/35080081. [PubMed] [CrossRef] [Google Scholar]

137. Kessel RG. Annulate lamellae: a last frontier in cellular organelles. Int Rev Cytol. 1992;133:43–120. doi: 10.1016/S0074-7696(08)61858-6. [PubMed] [CrossRef] [Google Scholar]

138. Nuccitelli R, Yim DL, Smart T. The sperm-induced Ca2+ wave following fertilization of the Xenopus egg requires the production of Ins(1, 4, 5)P3. Dev Biol. 1993;158(1):200–212. doi: 10.1006/dbio.1993.1179. [PubMed] [CrossRef] [Google Scholar]

139. Han JK, Nuccitelli R. Inositol 1,4,5-trisphosphate-induced calcium release in the organelle layers of the stratified, intact egg of Xenopus laevis. J Cell Biol. 1990;110(4):1103–1110. doi: 10.1083/jcb.110.4.1103. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

140. Steinhardt R, Zucker R, Schatten G. Intracellular calcium release at fertilization in the sea urchin egg. Dev Biol. 1977;58(1):185–196. doi: 10.1016/0012-1606(77)90084-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

141. Ridgway EB, Gilkey JC, Jaffe LF. Free calcium increases explosively in activating medaka eggs. Proc Natl Acad Sci USA. 1977;74(2):623–627. doi: 10.1073/pnas.74.2.623. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

142. Miyazaki S, Yuzaki M, Nakada K, Shirakawa H, Nakanishi S, Nakade S, Mikoshiba K. Block of Ca2+ wave and Ca2+ oscillation by antibody to the inositol 1,4,5-trisphosphate receptor in fertilized hamster eggs. Science. 1992;257(5067):251–255. doi: 10.1126/science.1321497. [PubMed] [CrossRef] [Google Scholar]

143. Terasaki M, Sardet C. Demonstration of calcium uptake and release by sea urchin egg cortical endoplasmic reticulum. J Cell Biol. 1991;115(4):1031–1037. doi: 10.1083/jcb.115.4.1031. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

144. Terasaki M, Jaffe LA, Hunnicutt GR, Hammer JA., 3rd Structural change of the endoplasmic reticulum during fertilization: evidence for loss of membrane continuity using the green fluorescent protein. Dev Biol. 1996;179(2):320–328. doi: 10.1006/dbio.1996.0263. [PubMed] [CrossRef] [Google Scholar]

145. Kline D, Mehlmann L, Fox C, Terasaki M. The cortical endoplasmic reticulum (ER) of the mouse egg: localization of ER clusters in relation to the generation of repetitive calcium waves. Dev Biol. 1999;215(2):431–442. doi: 10.1006/dbio.1999.9445. [PubMed] [CrossRef] [Google Scholar]

146. Mehlmann LM, Mikoshiba K, Kline D. Redistribution and increase in cortical inositol 1,4,5-trisphosphate receptors after meiotic maturation of the mouse oocyte. Dev Biol. 1996;180(2):489–498. doi: 10.1006/dbio.1996.0322. [PubMed] [CrossRef] [Google Scholar]

147. Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol. 2011;13(3):184–190. doi: 10.1038/ncb0311-184. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

148. Nilsson IM, von Heijne G. Determination of the distance between the oligosaccharyltransferase active site and the endoplasmic reticulum membrane. J Biol Chem. 1993;268(8):5798–5801. [PubMed] [Google Scholar]

149. Jitsuhara Y, Toyoda T, Itai T, Yamaguchi H. Chaperone-like functions of high-mannose type and complex-type N-glycans and their molecular basis. J Biochem. 2002;132(5):803–811. doi: 10.1093/oxfordjournals.jbchem.a003290. [PubMed] [CrossRef] [Google Scholar]

150. Hanson SR, Culyba EK, Hsu TL, Wong CH, Kelly JW, Powers ET. The core trisaccharide of an N-linked glycoprotein intrinsically accelerates folding and enhances stability. Proc Natl Acad Sci USA. 2009;106(9):3131–3136. doi: 10.1073/pnas.0810318105. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

151. Kaufman RJ. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 1999;13(10):1211–1233. doi: 10.1101/gad.13.10.1211. [PubMed] [CrossRef] [Google Scholar]

152. Kaufman RJ, Scheuner D, Schroder M, Shen X, Lee K, Liu CY, Arnold SM. The unfolded protein response in nutrient sensing and differentiation. Nat Rev Mol Cell Biol. 2002;3(6):411–421. doi: 10.1038/nrm829. [PubMed] [CrossRef] [Google Scholar]

153. Lee AS. Mammalian stress response: induction of the glucose-regulated protein family. Curr Opin Cell Biol. 1992;4(2):267–273. doi: 10.1016/0955-0674(92)90042-B. [PubMed] [CrossRef] [Google Scholar]

154. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8(7):519–529. doi: 10.1038/nrm2199. [PubMed] [CrossRef] [Google Scholar]

155. Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334(6059):1081–1086. doi: 10.1126/science.1209038. [PubMed] [CrossRef] [Google Scholar]

156. Schuck S, Prinz WA, Thorn KS, Voss C, Walter P. Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response. J Cell Biol. 2009;187(4):525–536. doi: 10.1083/jcb.200907074. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

157. Yanagitani K, Imagawa Y, Iwawaki T, Hosoda A, Saito M, Kimata Y, Kohno K. Cotranslational targeting of XBP1 protein to the membrane promotes cytoplasmic splicing of its own mRNA. Mol Cell. 2009;34(2):191–200. doi: 10.1016/j.molcel.2009.02.033. [PubMed] [CrossRef] [Google Scholar]

158. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 2001;107(7):881–891. doi: 10.1016/S0092-8674(01)00611-0. [PubMed] [CrossRef] [Google Scholar]

159. Lee K, Tirasophon W, Shen X, Michalak M, Prywes R, Okada T, Yoshida H, Mori K, Kaufman RJ. IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev. 2002;16(4):452–466. doi: 10.1101/gad.964702. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

160. Hollien J, Weissman JS. Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science. 2006;313(5783):104–107. doi: 10.1126/science.1129631. [PubMed] [CrossRef] [Google Scholar]

161. Gaddam D, Stevens N, Hollien J. Comparison of mRNA localization and regulation during endoplasmic reticulum stress in Drosophila cells. Mol Biol Cell. 2013;24(1):14–20. doi: 10.1091/mbc.E12-06-0491. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

162. Cao Y, Knochel S, Oswald F, Donow C, Zhao H, Knochel W. XBP1 forms a regulatory loop with BMP-4 and suppresses mesodermal and neural differentiation in Xenopus embryos. Mech Dev. 2006;123(1):84–96. doi: 10.1016/j.mod.2005.09.003. [PubMed] [CrossRef] [Google Scholar]

163. Brar GA, Yassour M, Friedman N, Regev A, Ingolia NT, Weissman JS. High-resolution view of the yeast meiotic program revealed by ribosome profiling. Science. 2012;335(6068):552–557. doi: 10.1126/science.1215110. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

164. Davidowitz J, Philips GH, Pachter BR, Breinin GM. Particle-free and glycogen-bearing double membrane arrays in extraocular muscle of rabbit. Am J Pathol. 1975;78(2):191–198. [PMC free article] [PubMed] [Google Scholar]

What is endoplasmic reticulum similar to?

The Endoplasmic Reticulum has the structure similar to that of the plasma membrane which can also be considered as the cell membrane. There are two types of Endoplasmic Reticulum, smooth and rough also regarded as SER and RER. So the correct answer would be cell membrane that is option (B).

What part of the human body is like the ER?

The endoplasmic reticulum can be represented as the nerves of the body because the nerves are also the basic delivery system of the human body just like the endoplasmic reticulum.

What is an example of endoplasmic reticulum?

Examples of protein synthesis by the rough endoplasmic reticulum are the proteins produced in secretory cells. These include the digestive enzymes produced in the stomach and the protein hormones like insulin produced in the pancreas.