What part of the brain is responsible for eating

1. Johnelle Sparks P, Bollinger M. A demographic profile of obesity in the adult and veteran us populations in 2008. Population Res Policy Rev. 2011;13:211–33. [Google Scholar]

2. Batterink L, Yokum S, Stice E. Body mass correlates inversely with inhibitory control in response to food among adolescent girls: An fmri study. Neuroimage. 2010;52(4):1696–703. [PMC free article] [PubMed] [Google Scholar]

3. Hendrick OM, Ide JS, Luo X, Li CS. Dissociable processes of cognitive control during error and non-error conflicts: A study of the stop signal task. PLoS One. 2010;5(10):e13155. [PMC free article] [PubMed] [Google Scholar]

4. Hendrick OM, Luo X, Zhang S, Li CS. Saliency processing and obesity: A preliminary imaging study of the stop signal task. Obesity (Silver Spring) 2012;20(9):1796–802. [PMC free article] [PubMed] [Google Scholar]

5. Levitan RD, Rivera J, Silveira PP, Steiner M, Gaudreau H, Hamilton J, et al. Gender differences in the association between stop-signal reaction times, body mass indices and/or spontaneous food intake in pre-school children: An early model of compromised inhibitory control and obesity. Int J Obes (Lond) 2015;39(4):614–9. [PubMed] [Google Scholar]

6. Kulendran M, Vlaev I, Sugden C, King D, Ashrafian H, Gately P, et al. Neuropsychological assessment as a predictor of weight loss in obese adolescents. Int J Obes (Lond) 2014;38(4):507–12. [PubMed] [Google Scholar]

7. Stoeckel LE, Murdaugh DL, Cox JE, Cook EW, 3rd, Weller RE. Greater impulsivity is associated with decreased brain activation in obese women during a delay discounting task. Brain Imaging Behav. 2013;7(2):116–28. [PMC free article] [PubMed] [Google Scholar]

8. Krafft CE, Schwarz NF, Chi L, Weinberger AL, Schaeffer DJ, Pierce JE, et al. An 8-month randomized controlled exercise trial alters brain activation during cognitive tasks in overweight children. Obesity (Silver Spring) 2014;22(1):232–42. [PMC free article] [PubMed] [Google Scholar]

9. Balodis IM, Molina ND, Kober H, Worhunsky PD, White MA, Rajita S, et al. Divergent neural substrates of inhibitory control in binge eating disorder relative to other manifestations of obesity. Obesity (Silver Spring) 2013;21(2):367–77. [PMC free article] [PubMed] [Google Scholar]

10. Moreno-Lopez L, Soriano-Mas C, Delgado-Rico E, Rio-Valle JS, Verdejo-Garcia A. Brain structural correlates of reward sensitivity and impulsivity in adolescents with normal and excess weight. PLoS One. 2012;7(11):e49185. [PMC free article] [PubMed] [Google Scholar]

11. Salem V, Dhillo WS. Imaging in endocrinology: The use of functional mri to study the endocrinology of appetite. Eur J Endocrinol. 2015 [PubMed] [Google Scholar]

12. Carnell S, Gibson C, Benson L, Ochner CN, Geliebter A. Neuroimaging and obesity: Current knowledge and future directions. Obes Rev. 2012;13(1):43–56. [PMC free article] [PubMed] [Google Scholar]

13. Behary P, Miras AD. Brain responses to food and weight loss. Exp Physiol. 2014;99(9):1121–7. [PubMed] [Google Scholar]

14. Garcia-Garcia I, Horstmann A, Jurado MA, Garolera M, Chaudhry SJ, Margulies DS, et al. Reward processing in obesity, substance addiction and non-substance addiction. Obes Rev. 2014;15(11):853–69. [PubMed] [Google Scholar]

15. Machann J, Horstmann A, Born M, Hesse S, Hirsch FW. Diagnostic imaging in obesity. Best Pract Res Clin Endocrinol Metab. 2013;27(2):261–77. [PubMed] [Google Scholar]

16. Pursey KM, Stanwell P, Callister RJ, Brain K, Collins CE, Burrows TL. Neural responses to visual food cues according to weight status: A systematic review of functional magnetic resonance imaging studies. Front Nutr. 2014;1:7. [PMC free article] [PubMed] [Google Scholar]

17. Val-Laillet D, Aarts E, Weber B, Ferrari M, Quaresima V, Stoeckel LE, et al. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity. Neuroimage Clin. 2015;8:1–31. [PMC free article] [PubMed] [Google Scholar]

18. Connolly L, Coveleskie K, Kilpatrick LA, Labus JS, Ebrat B, Stains J, et al. Differences in brain responses between lean and obese women to a sweetened drink. Neurogastroenterol Motil. 2013;25(7):579–e460. [PMC free article] [PubMed] [Google Scholar]

19. Rudenga KJ, Sinha R, Small DM. Acute stress potentiates brain response to milkshake as a function of body weight and chronic stress. Int J Obes (Lond) 2013;37(2):309–16. [PMC free article] [PubMed] [Google Scholar]

20. Small DM. Individual differences in the neurophysiology of reward and the obesity epidemic. Int J Obes (Lond) 2009;33(Suppl 2):S44–8. [PMC free article] [PubMed] [Google Scholar]

21. Tryon MS, Carter CS, Decant R, Laugero KD. Chronic stress exposure may affect the brain's response to high calorie food cues and predispose to obesogenic eating habits. Physiol Behav. 2013;120:233–42. [PubMed] [Google Scholar]

22. Li CS, Ide JS, Zhang S, Hu S, Chao HH, Zaborszky L. Resting state functional connectivity of the basal nucleus of meynert in humans: In comparison to the ventral striatum and the effects of age. Neuroimage. 2014;97:321–32. [PMC free article] [PubMed] [Google Scholar]

23. Zhang S, Hu S, Chao HH, Li CR. Resting-state functional connectivity of the locus coeruleus in humans: In comparison with the ventral tegmental area/substantia nigra pars compacta and the effects of age. Cereb Cortex. 2015 [PMC free article] [PubMed] [Google Scholar]

24. Zhang S, Li CS. Functional connectivity mapping of the human precuneus by resting state fmri. Neuroimage. 2012;59(4):3548–62. [PMC free article] [PubMed] [Google Scholar]

25. Zhang S, Li CS. Functional clustering of the human inferior parietal lobule by whole-brain connectivity mapping of resting-state functional magnetic resonance imaging signals. Brain Connect. 2014;4(1):53–69. [PMC free article] [PubMed] [Google Scholar]

26. Zhang S, Ide JS, Li CS. Resting-state functional connectivity of the medial superior frontal cortex. Cereb Cortex. 2012;22(1):99–111. [PMC free article] [PubMed] [Google Scholar]

27. Wright H, Li X, Fallon NB, Crookall R, Giesbrecht T, Thomas A, et al. Differential effects of hunger and satiety on insular cortex and hypothalamic functional connectivity. Eur J Neurosci. 2016 [PMC free article] [PubMed] [Google Scholar]

28. Park BY, Seo J, Yi J, Park H. Structural and functional brain connectivity of people with obesity and prediction of body mass index using connectivity. PLoS One. 2015;10(11):e0141376. [PMC free article] [PubMed] [Google Scholar]

29. Kullmann S, Callaghan MF, Heni M, Weiskopf N, Scheffler K, Haring HU, et al. Specific white matter tissue microstructure changes associated with obesity. Neuroimage. 2015;125:36–44. [PMC free article] [PubMed] [Google Scholar]

30. Chang A, Chen CC, Li HH, Li CS. Perigenual anterior cingulate event-related potential precedes stop signal errors. Neuroimage. 2015;111:179–85. [PMC free article] [PubMed] [Google Scholar]

31. Stingl KT, Rogic M, Stingl K, Canova C, Tschritter O, Braun C, et al. The temporal sequence of magnetic brain activity for food categorization and memorization--an exploratory study. Neuroimage. 2010;52(4):1584–91. [PubMed] [Google Scholar]

32. Versace F, Kypriotakis G, Basen-Engquist K, Schembre SM. Heterogeneity in brain reactivity to pleasant and food cues: Evidence of sign-tracking in humans. Soc Cogn Affect Neurosci. 2015 [PMC free article] [PubMed] [Google Scholar]

33. Fearnbach SN, Silvert L, Keller KL, Genin PM, Morio B, Pereira B, et al. Reduced neural response to food cues following exercise is accompanied by decreased energy intake in obese adolescents. Int J Obes (Lond) 2015 [PubMed] [Google Scholar]

34. Bauer LO, Manning KJ. Challenges in the detection of working memory and attention decrements among overweight adolescent girls. Neuropsychobiology. 2016;73(1):43–51. [PMC free article] [PubMed] [Google Scholar]

35. Li CS, Potenza MN, Lee DE, Planeta B, Gallezot JD, Labaree D, et al. Decreased norepinephrine transporter availability in obesity: Positron emission tomography imaging with (s,s)-[(11)c]o-methylreboxetine. Neuroimage. 2014;86:306–10. [PMC free article] [PubMed] [Google Scholar]

36. Addy C, Wright H, Van Laere K, Gantz I, Erondu N, Musser BJ, et al. The acyclic cb1r inverse agonist taranabant mediates weight loss by increasing energy expenditure and decreasing caloric intake. Cell Metab. 2008;7(1):68–78. [PubMed] [Google Scholar]

37. Schwartz MW, Porte D., Jr Diabetes, obesity, and the brain. Science. 2005;307(5708):375–9. [PubMed] [Google Scholar]

38. Chan JL, Mantzoros CS. Leptin and the hypothalamic-pituitary regulation of the gonadotropin-gonadal axis. Pituitary. 2001;4(1-2):87–92. [PubMed] [Google Scholar]

39. Mantzoros CS. The role of leptin and hypothalamic neuropeptides in energy homeostasis: Update on leptin in obesity. Growth Horm IGF Res. 2001;11(Suppl A):S85–9. [PubMed] [Google Scholar]

40. Stieg MR, Sievers C, Farr O, Stalla GK, Mantzoros CS. Leptin: A hormone linking activation of neuroendocrine axes with neuropathology. Psychoneuroendocrinology. 2015;51:47–57. [PubMed] [Google Scholar]

41. Farr OM, Gavrieli A, Mantzoros CS. Leptin applications in 2015: What have we learned about leptin and obesity? Curr Opin Endocrinol Diabetes Obes. 2015;22(5):353–9. [PMC free article] [PubMed] [Google Scholar]

42. Farr OM, Tsoukas MA, Mantzoros CS. Leptin and the brain: Influences on brain development, cognitive functioning and psychiatric disorders. Metabolism. 2015;64(1):114–30. [PubMed] [Google Scholar]

43. Chan JL, Heist K, DePaoli AM, Veldhuis JD, Mantzoros CS. The role of falling leptin levels in the neuroendocrine and metabolic adaptation to short-term starvation in healthy men. J Clin Invest. 2003;111(9):1409–21. [PMC free article] [PubMed] [Google Scholar]

44. Balland E, Cowley MA. New insights in leptin resistance mechanisms in mice. Front Neuroendocrinol. 2015 [PubMed] [Google Scholar]

45. Crujeiras AB, Carreira MC, Cabia B, Andrade S, Amil M, Casanueva FF. Leptin resistance in obesity: An epigenetic landscape. Life Sci. 2015;140:57–63. [PubMed] [Google Scholar]

46. Sainz N, Barrenetxe J, Moreno-Aliaga MJ, Martinez JA. Leptin resistance and diet-induced obesity: Central and peripheral actions of leptin. Metabolism. 2015;64(1):35–46. [PubMed] [Google Scholar]

47. Zigman JM, Bouret SG, Andrews ZB. Obesity impairs the action of the neuroendocrine ghrelin system. Trends Endocrinol Metab. 2015 [PubMed] [Google Scholar]

48. Bluher M, Mantzoros CS. From leptin to other adipokines in health and disease: Facts and expectations at the beginning of the 21st century. Metabolism. 2015;64(1):131–45. [PubMed] [Google Scholar]

49. Polyzos SA, Toulis KA, Goulis DG, Zavos C, Kountouras J. Serum total adiponectin in nonalcoholic fatty liver disease: A systematic review and meta-analysis. Metabolism. 2011;60(3):313–26. [PubMed] [Google Scholar]

50. Van de Voorde J, Pauwels B, Boydens C, Decaluwe K. Adipocytokines in relation to cardiovascular disease. Metabolism. 2013;62(11):1513–21. [PubMed] [Google Scholar]

51. Wu ZJ, Cheng YJ, Gu WJ, Aung LH. Adiponectin is associated with increased mortality in patients with already established cardiovascular disease: A systematic review and meta-analysis. Metabolism. 2014;63(9):1157–66. [PubMed] [Google Scholar]

52. Aroor AR, McKarns S, Demarco VG, Jia G, Sowers JR. Maladaptive immune and inflammatory pathways lead to cardiovascular insulin resistance. Metabolism. 2013;62(11):1543–52. [PMC free article] [PubMed] [Google Scholar]

53. Bjorntorp P. Endocrine abnormalities of obesity. Metabolism. 1995;44(9 Suppl 3):21–3. [PubMed] [Google Scholar]

54. Deer J, Koska J, Ozias M, Reaven P. Dietary models of insulin resistance. Metabolism. 2015;64(2):163–71. [PubMed] [Google Scholar]

55. Gerich JE. Metabolic abnormalities in impaired glucose tolerance. Metabolism. 1997;46(12 Suppl 1):40–3. [PubMed] [Google Scholar]

56. Seretis K, Goulis DG, Koliakos G, Demiri E. The effects of abdominal lipectomy in metabolic syndrome components and insulin sensitivity in females: A systematic review and meta-analysis. Metabolism. 2015;64(12):1640–9. [PubMed] [Google Scholar]

57. Tsatsoulis A, Mantzaris MD, Bellou S, Andrikoula M. Insulin resistance: An adaptive mechanism becomes maladaptive in the current environment - an evolutionary perspective. Metabolism. 2013;62(5):622–33. [PubMed] [Google Scholar]

58. Wabitsch M, Hauner H, Heinze E, Teller WM. The role of growth hormone/insulin-like growth factors in adipocyte differentiation. Metabolism. 1995;44(10 Suppl 4):45–9. [PubMed] [Google Scholar]

59. Walker M. Obesity, insulin resistance, and its link to non-insulin-dependent diabetes mellitus. Metabolism. 1995;44(9 Suppl 3):18–20. [PubMed] [Google Scholar]

60. Bostrom PA, Fernandez-Real JM, Mantzoros C. Irisin in humans: Recent advances and questions for future research. Metabolism. 2014;63(2):178–80. [PubMed] [Google Scholar]

61. Crujeiras AB, Zulet MA, Lopez-Legarrea P, de la Iglesia R, Pardo M, Carreira MC, et al. Association between circulating irisin levels and the promotion of insulin resistance during the weight maintenance period after a dietary weight-lowering program in obese patients. Metabolism. 2014;63(4):520–31. [PubMed] [Google Scholar]

62. Polyzos SA, Kountouras J, Anastasilakis AD, Geladari EV, Mantzoros CS. Irisin in patients with nonalcoholic fatty liver disease. Metabolism. 2014;63(2):207–17. [PubMed] [Google Scholar]

63. Polyzos SA, Kountouras J, Shields K, Mantzoros CS. Irisin: A renaissance in metabolism? Metabolism. 2013;62(8):1037–44. [PubMed] [Google Scholar]

64. Polyzos SA, Mathew H, Mantzoros CS. Irisin: A true, circulating hormone. Metabolism. 2015;64(12):1611–8. [PubMed] [Google Scholar]

65. Cork SC, Richards JE, Holt MK, Gribble FM, Reimann F, Trapp S. Distribution and characterisation of glucagon-like peptide-1 receptor expressing cells in the mouse brain. Mol Metab. 2015;4(10):718–31. [PMC free article] [PubMed] [Google Scholar]

66. Maniscalco JW, Zheng H, Gordon PJ, Rinaman L. Negative energy balance blocks neural and behavioral responses to acute stress by “silencing” central glucagon-like peptide 1 signaling in rats. 2015;35(30):10701–14. [PMC free article] [PubMed] [Google Scholar]

67. Tweedie D, Rachmany L, Rubovitch V, Li Y, Holloway HW, Lehrmann E, et al. Blast traumatic brain injury-induced cognitive deficits are attenuated by preinjury or postinjury treatment with the glucagon-like peptide-1 receptor agonist, exendin-4. Alzheimers Dement. 2015 [PMC free article] [PubMed] [Google Scholar]

68. van Bloemendaal L, Veltman DJ, Ten Kulve JS, Drent ML, Barkhof F, Diamant M, et al. Emotional eating is associated with increased brain responses to food-cues and reduced sensitivity to glp-1 receptor activation. Obesity (Silver Spring) 2015;23(10):2075–82. [PubMed] [Google Scholar]

69. Wang XF, Liu JJ, Xia J, Liu J, Mirabella V, Pang ZP. Endogenous glucagon-like peptide-1 suppresses high-fat food intake by reducing synaptic drive onto mesolimbic dopamine neurons. J Neurosci. 2015;12(5):726–33. [PMC free article] [PubMed] [Google Scholar]

70. Davies MJ, Bergenstal R, Bode B, Kushner RF, Lewin A, Skjoth TV, et al. Efficacy of liraglutide for weight loss among patients with type 2 diabetes: The scale diabetes randomized clinical trial. Jama. 2015;314(7):687–99. [PubMed] [Google Scholar]

71. Nuffer WA, Trujillo JM. Liraglutide: A new option for the treatment of obesity. Pharmacotherapy. 2015;35(10):926–34. [PubMed] [Google Scholar]

72. Pi-Sunyer X, Astrup A, Fujioka K, Greenway F, Halpern A, Krempf M, et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N Engl J Med. 2015;373(1):11–22. [PubMed] [Google Scholar]

73. Delgado JM, Anand BK. Increase of food intake induced by electrical stimulation of the lateral hypothalamus. Am J Physiol. 1953;172(1):162–8. [PubMed] [Google Scholar]

74. Mogenson GJ. Stability and modification of consummatory behaviors elicited by electrical stimulation of the hypothalamus. Physiol Behav. 1971;6(3):255–60. [PubMed] [Google Scholar]

75. Stephan FK, Valenstein ES, Zucker I. Copulation and eating during electrical stimulation of the rat hypothalamus. Physiol Behav. 1971;7(4):587–93. [PubMed] [Google Scholar]

76. Sani S, Jobe K, Smith A, Kordower JH, Bakay RA. Deep brain stimulation for treatment of obesity in rats. J Neurosurg. 2007;107(4):809–13. [PubMed] [Google Scholar]

77. Stenger J, Fournier T, Bielajew C. The effects of chronic ventromedial hypothalamic stimulation on weight gain in rats. Physiol Behav. 1991;50(6):1209–13. [PubMed] [Google Scholar]

78. Bielajew C, Stenger J, Schindler D. Factors that contribute to the reduced weight gain following chronic ventromedial hypothalamic stimulation. Behav Brain Res. 1994;62(2):143–8. [PubMed] [Google Scholar]

79. Lehmkuhle MJ, Mayes SM, Kipke DR. Unilateral neuromodulation of the ventromedial hypothalamus of the rat through deep brain stimulation. J Neural Eng. 2010;7(3):036006. [PubMed] [Google Scholar]

80. Lacan G, De Salles AA, Gorgulho AA, Krahl SE, Frighetto L, Behnke EJ, et al. Modulation of food intake following deep brain stimulation of the ventromedial hypothalamus in the vervet monkey. Laboratory investigation. J Neurosurg. 2008;108(2):336–42. [PubMed] [Google Scholar]

81. Geha PY, Aschenbrenner K, Felsted J, O'Malley SS, Small DM. Altered hypothalamic response to food in smokers. Am J Clin Nutr. 2013;97(1):15–22. [PMC free article] [PubMed] [Google Scholar]

82. Baik JH. Dopamine signaling in food addiction: Role of dopamine d2 receptors. BMB Rep. 2013;46(11):519–26. [PMC free article] [PubMed] [Google Scholar]

83. Blum K, Thanos PK, Gold MS. Dopamine and glucose, obesity, and reward deficiency syndrome. Front Psychol. 2014;5:919. [PMC free article] [PubMed] [Google Scholar]

84. Burger KS, Stice E. Variability in reward responsivity and obesity: Evidence from brain imaging studies. Curr Drug Abuse Rev. 2011;4(3):182–9. [PMC free article] [PubMed] [Google Scholar]

85. DiLeone RJ, Taylor JR, Picciotto MR. The drive to eat: Comparisons and distinctions between mechanisms of food reward and drug addiction. Nat Neurosci. 2012;15(10):1330–5. [PMC free article] [PubMed] [Google Scholar]

86. Figlewicz DP. Adiposity signals and food reward: Expanding the cns roles of insulin and leptin. Am J Physiol Regul Integr Comp Physiol. 2003;284(4):R882–92. [PubMed] [Google Scholar]

87. Gosnell BA, Levine AS. Reward systems and food intake: Role of opioids. Int J Obes (Lond) 2009;33(Suppl 2):S54–8. [PubMed] [Google Scholar]

88. Kelley M, Khan NA, Rolls ET. Taste, olfactory, and food reward value processing in the brain. Adv Nutr. 2015;127-128:64–90. [PubMed] [Google Scholar]

89. King BM. The modern obesity epidemic, ancestral hunter-gatherers, and the sensory/reward control of food intake. Am Psychol. 2013;68(2):88–96. [PubMed] [Google Scholar]

90. Michaelides M, Thanos PK, Volkow ND, Wang GJ. Translational neuroimaging in drug addiction and obesity. Ilar j. 2012;53(1):59–68. [PubMed] [Google Scholar]

91. Murray S, Tulloch A, Gold MS, Avena NM. Hormonal and neural mechanisms of food reward, eating behaviour and obesity. Nat Rev Endocrinol. 2014;10(9):540–52. [PubMed] [Google Scholar]

92. Smith DG, Robbins TW. The neurobiological underpinnings of obesity and binge eating: A rationale for adopting the food addiction model. Biol Psychiatry. 2013;73(9):804–10. [PubMed] [Google Scholar]

93. Stice E, Figlewicz DP, Gosnell BA, Levine AS, Pratt WE. The contribution of brain reward circuits to the obesity epidemic. Neurosci Biobehav Rev. 2013;37(9 Pt A):2047–58. [PMC free article] [PubMed] [Google Scholar]

94. Volkow ND, Wang GJ, Fowler JS, Tomasi D, Baler R. Food and drug reward: Overlapping circuits in human obesity and addiction. Curr Top Behav Neurosci. 2012;11:1–24. [PubMed] [Google Scholar]

95. Volkow ND, Wang GJ, Tomasi D, Baler RD. The addictive dimensionality of obesity. Biol Psychiatry. 2013;73(9):811–8. [PMC free article] [PubMed] [Google Scholar]

96. Volkow ND, Wang GJ, Tomasi D, Baler RD. Obesity and addiction: Neurobiological overlaps. Obes Rev. 2013;14(1):2–18. [PMC free article] [PubMed] [Google Scholar]

97. Wang GJ, Volkow ND, Fowler JS. The role of dopamine in motivation for food in humans: Implications for obesity. Expert Opin Ther Targets. 2002;6(5):601–9. [PubMed] [Google Scholar]

98. Wang GJ, Volkow ND, Thanos PK, Fowler JS. Similarity between obesity and drug addiction as assessed by neurofunctional imaging: A concept review. J Addict Dis. 2004;23(3):39–53. [PubMed] [Google Scholar]

99. Wise RA. Dual roles of dopamine in food and drug seeking: The drive-reward paradox. Biol Psychiatry. 2013;73(9):819–26. [PMC free article] [PubMed] [Google Scholar]

100. Ziauddeen H, Alonso-Alonso M, Hill JO. Obesity and the neurocognitive basis of food reward and the control of intake. 2015;6(4):474–86. [PMC free article] [PubMed] [Google Scholar]

101. Dunn JP, Kessler RM, Feurer ID, Volkow ND, Patterson BW, Ansari MS, et al. Relationship of dopamine type 2 receptor binding potential with fasting neuroendocrine hormones and insulin sensitivity in human obesity. Diabetes Care. 2012;35(5):1105–11. [PMC free article] [PubMed] [Google Scholar]

102. Thanos PK, Michaelides M, Piyis YK, Wang GJ, Volkow ND. Food restriction markedly increases dopamine d2 receptor (d2r) in a rat model of obesity as assessed with in-vivo mupet imaging ([11c] raclopride) and in-vitro ([3h] spiperone) autoradiography. Synapse. 2008;62(1):50–61. [PubMed] [Google Scholar]

103. Dunn JP, Cowan RL, Volkow ND, Feurer ID, Li R, Williams DB, et al. Decreased dopamine type 2 receptor availability after bariatric surgery: Preliminary findings. Brain Res. 2010;1350:123–30. [PMC free article] [PubMed] [Google Scholar]

104. Volkow ND, Wang GJ, Telang F, Fowler JS, Thanos PK, Logan J, et al. Low dopamine striatal d2 receptors are associated with prefrontal metabolism in obese subjects: Possible contributing factors. Neuroimage. 2008;42(4):1537–43. [PMC free article] [PubMed] [Google Scholar]

105. Wang GJ, Volkow ND, Logan J, Pappas NR, Wong CT, Zhu W, et al. Brain dopamine and obesity. Lancet. 2001;357(9253):354–7. [PubMed] [Google Scholar]

106. Michaelides M, Thanos PK, Kim R, Cho J, Ananth M, Wang GJ, et al. Pet imaging predicts future body weight and cocaine preference. Neuroimage. 2012;59(2):1508–13. [PMC free article] [PubMed] [Google Scholar]

107. Volkow ND, Wang GJ, Maynard L, Jayne M, Fowler JS, Zhu W, et al. Brain dopamine is associated with eating behaviors in humans. Int J Eat Disord. 2003;33(2):136–42. [PubMed] [Google Scholar]

108. Johnson PM, Kenny PJ. Dopamine d2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci. 2010;13(5):635–41. [PMC free article] [PubMed] [Google Scholar]

109. Rothemund Y, Preuschhof C, Bohner G, Bauknecht HC, Klingebiel R, Flor H, et al. Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals. Neuroimage. 2007;37(2):410–21. [PubMed] [Google Scholar]

110. Stice E, Yokum S, Bohon C, Marti N, Smolen A. Reward circuitry responsivity to food predicts future increases in body mass: Moderating effects of drd2 and drd4. Neuroimage. 2010;50(4):1618–25. [PMC free article] [PubMed] [Google Scholar]

111. Beaver JD, Lawrence AD, van Ditzhuijzen J, Davis MH, Woods A, Calder AJ. Individual differences in reward drive predict neural responses to images of food. J Neurosci. 2006;26(19):5160–6. [PMC free article] [PubMed] [Google Scholar]

112. Pelchat ML, Johnson A, Chan R, Valdez J, Ragland JD. Images of desire: Food-craving activation during fmri. Neuroimage. 2004;23(4):1486–93. [PubMed] [Google Scholar]

113. Yokum S, Ng J, Stice E. Attentional bias to food images associated with elevated weight and future weight gain: An fmri study. Obesity (Silver Spring) 2011;19(9):1775–83. [PMC free article] [PubMed] [Google Scholar]

114. Stice E, Spoor S, Bohon C, Veldhuizen MG, Small DM. Relation of reward from food intake and anticipated food intake to obesity: A functional magnetic resonance imaging study. J Abnorm Psychol. 2008;117(4):924–35. [PMC free article] [PubMed] [Google Scholar]

115. Colantuoni C, Rada P, McCarthy J, Patten C, Avena NM, Chadeayne A, et al. Evidence that intermittent, excessive sugar intake causes endogenous opioid dependence. Obes Res. 2002;10(6):478–88. [PubMed] [Google Scholar]

116. Dong C, Sanchez LE, Price RA. Relationship of obesity to depression: A family-based study. Int J Obes Relat Metab Disord. 2004;28(6):790–5. [PubMed] [Google Scholar]

117. Novick JS, Stewart JW, Wisniewski SR, Cook IA, Manev R, Nierenberg AA, et al. Clinical and demographic features of atypical depression in outpatients with major depressive disorder: Preliminary findings from star*d. J Clin Psychiatry. 2005;66(8):1002–11. [PubMed] [Google Scholar]

118. Potenza MN. Obesity, food, and addiction: Emerging neuroscience and clinical and public health implications. Neuropsychopharmacology. 2014;39(1):249–50. [PMC free article] [PubMed] [Google Scholar]

119. Roberts RE, Deleger S, Strawbridge WJ, Kaplan GA. Prospective association between obesity and depression: Evidence from the alameda county study. Int J Obes Relat Metab Disord. 2003;27(4):514–21. [PubMed] [Google Scholar]

120. Simon GE, Von Korff M, Saunders K, Miglioretti DL, Crane PK, van Belle G, et al. Association between obesity and psychiatric disorders in the us adult population. Arch Gen Psychiatry. 2006;63(7):824–30. [PMC free article] [PubMed] [Google Scholar]

121. Macht M. Characteristics of eating in anger, fear, sadness and joy. Appetite. 1999;33(1):129–39. [PubMed] [Google Scholar]

122. Canetti L, Bachar E, Berry EM. Food and emotion. Behav Processes. 2002;60(2):157–64. [PubMed] [Google Scholar]

123. Farr OM, Sloan DM, Keane TM, Mantzoros CS. Stress- and ptsd-associated obesity and metabolic dysfunction: A growing problem requiring further research and novel treatments. Metabolism. 2014;63(12):1463–8. [PMC free article] [PubMed] [Google Scholar]

124. O'Doherty JP, Deichmann R, Critchley HD, Dolan RJ. Neural responses during anticipation of a primary taste reward. Neuron. 2002;33(5):815–26. [PubMed] [Google Scholar]

125. Small DM, Veldhuizen MG, Felsted J, Mak YE, McGlone F. Separable substrates for anticipatory and consummatory food chemosensation. Neuron. 2008;57(5):786–97. [PMC free article] [PubMed] [Google Scholar]

126. Stoeckel LE, Weller RE, Cook EW, 3rd, Twieg DB, Knowlton RC, Cox JE. Widespread reward-system activation in obese women in response to pictures of high-calorie foods. Neuroimage. 2008;41(2):636–47. [PubMed] [Google Scholar]

127. Holsen LM, Zarcone JR, Brooks WM, Butler MG, Thompson TI, Ahluwalia JS, et al. Neural mechanisms underlying hyperphagia in prader-willi syndrome. Obesity (Silver Spring) 2006;14(6):1028–37. [PMC free article] [PubMed] [Google Scholar]

128. Boutelle KN, Wierenga CE, Bischoff-Grethe A, Melrose AJ, Grenesko-Stevens E, Paulus MP, et al. Increased brain response to appetitive tastes in the insula and amygdala in obese compared with healthy weight children when sated. Int J Obes (Lond) 2015;39(4):620–8. [PMC free article] [PubMed] [Google Scholar]

129. Jastreboff AM, Lacadie C, Seo D, Kubat J, Van Name MA, Giannini C, et al. Leptin is associated with exaggerated brain reward and emotion responses to food images in adolescent obesity. Diabetes Care. 2014;37(11):3061–8. [PMC free article] [PubMed] [Google Scholar]

130. Mehta S, Melhorn SJ, Smeraglio A, Tyagi V, Grabowski T, Schwartz MW, et al. Regional brain response to visual food cues is a marker of satiety that predicts food choice. Am J Clin Nutr. 2012;96(5):989–99. [PMC free article] [PubMed] [Google Scholar]

131. Sun X, Kroemer NB, Veldhuizen MG, Babbs AE, de Araujo IE, Gitelman DR, et al. Basolateral amygdala response to food cues in the absence of hunger is associated with weight gain susceptibility. J Neurosci. 2015;35(20):7964–76. [PMC free article] [PubMed] [Google Scholar]

132. Ulrich-Lai YM, Christiansen AM, Wang X, Song S, Herman JP. Statistical modeling implicates neuroanatomical circuit mediating stress relief by ‘comfort’ food. Brain Struct Funct. 2015 [PMC free article] [PubMed] [Google Scholar]

133. Martin AA, Davidson TL. Human cognitive function and the obesogenic environment. Physiol Behav. 2014;136:185–93. [PMC free article] [PubMed] [Google Scholar]

134. Parent MB, Darling JN, Henderson YO. Remembering to eat: Hippocampal regulation of meal onset. Am J Physiol Regul Integr Comp Physiol. 2014;306(10):R701–13. [PMC free article] [PubMed] [Google Scholar]

135. Robinson E, Aveyard P, Daley A, Jolly K, Lewis A, Lycett D, et al. Eating attentively: A systematic review and meta-analysis of the effect of food intake memory and awareness on eating. Am J Clin Nutr. 2013;97(4):728–42. [PMC free article] [PubMed] [Google Scholar]

136. Cornell CE, Rodin J, Weingarten H. Stimulus-induced eating when satiated. Physiol Behav. 1989;45(4):695–704. [PubMed] [Google Scholar]

137. Petrovich GD, Ross CA, Holland PC, Gallagher M. Medial prefrontal cortex is necessary for an appetitive contextual conditioned stimulus to promote eating in sated rats. J Neurosci. 2007;27(24):6436–41. [PMC free article] [PubMed] [Google Scholar]

138. Reppucci CJ, Petrovich GD. Learned food-cue stimulates persistent feeding in sated rats. Appetite. 2012;59(2):437–47. [PMC free article] [PubMed] [Google Scholar]

139. Weingarten HP. Meal initiation controlled by learned cues: Basic behavioral properties. Appetite. 1984;5(2):147–58. [PubMed] [Google Scholar]

140. Rolls ET. Functions of the orbitofrontal and pregenual cingulate cortex in taste, olfaction, appetite and emotion. Acta Physiol Hung. 2008;95(2):131–64. [PubMed] [Google Scholar]

141. Smith GP. The controls of eating: A shift from nutritional homeostasis to behavioral neuroscience. Nutrition. 2000;16(10):814–20. [PubMed] [Google Scholar]

142. Wang GJ, Tomasi D, Backus W, Wang R, Telang F, Geliebter A, et al. Gastric distention activates satiety circuitry in the human brain. Neuroimage. 2008;39(4):1824–31. [PubMed] [Google Scholar]

143. Wang GJ, Yang J, Volkow ND, Telang F, Ma Y, Zhu W, et al. Gastric stimulation in obese subjects activates the hippocampus and other regions involved in brain reward circuitry. Proc Natl Acad Sci U S A. 2006;103(42):15641–5. [PMC free article] [PubMed] [Google Scholar]

144. Carlini VP, Varas MM, Cragnolini AB, Schioth HB, Scimonelli TN, de Barioglio SR. Differential role of the hippocampus, amygdala, and dorsal raphe nucleus in regulating feeding, memory, and anxiety-like behavioral responses to ghrelin. Biochem Biophys Res Commun. 2004;313(3):635–41. [PubMed] [Google Scholar]

145. Chen L, Xing T, Wang M, Miao Y, Tang M, Chen J, et al. Local infusion of ghrelin enhanced hippocampal synaptic plasticity and spatial memory through activation of phosphoinositide 3-kinase in the dentate gyrus of adult rats. Eur J Neurosci. 2011;33(2):266–75. [PubMed] [Google Scholar]

146. Farr SA, Banks WA, Morley JE. Effects of leptin on memory processing. Peptides. 2006;27(6):1420–5. [PubMed] [Google Scholar]

147. Oomura Y, Hori N, Shiraishi T, Fukunaga K, Takeda H, Tsuji M, et al. Leptin facilitates learning and memory performance and enhances hippocampal ca1 long-term potentiation and camk ii phosphorylation in rats. Peptides. 2006;27(11):2738–49. [PubMed] [Google Scholar]

148. Davidson TL, Chan K, Jarrard LE, Kanoski SE, Clegg DJ, Benoit SC. Contributions of the hippocampus and medial prefrontal cortex to energy and body weight regulation. Hippocampus. 2009;19(3):235–52. [PMC free article] [PubMed] [Google Scholar]

149. Francis HM, Stevenson RJ. Higher reported saturated fat and refined sugar intake is associated with reduced hippocampal-dependent memory and sensitivity to interoceptive signals. Behav Neurosci. 2011;125(6):943–55. [PubMed] [Google Scholar]

150. Hebben N, Corkin S, Eichenbaum H, Shedlack K. Diminished ability to interpret and report internal states after bilateral medial temporal resection: Case h.M. Behav Neurosci. 1985;99(6):1031–9. [PubMed] [Google Scholar]

151. Higgs S, Williamson AC, Rotshtein P, Humphreys GW. Sensory-specific satiety is intact in amnesics who eat multiple meals. Psychol Sci. 2008;19(7):623–8. [PubMed] [Google Scholar]

152. Beilharz JE, Maniam J, Morris MJ. Short exposure to a diet rich in both fat and sugar or sugar alone impairs place, but not object recognition memory in rats. Brain Behav Immun. 2014;37:134–41. [PubMed] [Google Scholar]

153. Darling JN, Ross AP, Bartness TJ, Parent MB. Predicting the effects of a high-energy diet on fatty liver and hippocampal-dependent memory in male rats. Obesity (Silver Spring) 2013;21(5):910–7. [PMC free article] [PubMed] [Google Scholar]

154. Davidson TL, Hargrave SL, Swithers SE, Sample CH, Fu X, Kinzig KP, et al. Interrelationships among diet, obesity and hippocampal-dependent cognitive function. Neuroscience. 2013;253:110–22. [PMC free article] [PubMed] [Google Scholar]

155. Farr SA, Yamada KA, Butterfield DA, Abdul HM, Xu L, Miller NE, et al. Obesity and hypertriglyceridemia produce cognitive impairment. Endocrinology. 2008;149(5):2628–36. [PMC free article] [PubMed] [Google Scholar]

156. Banks WA, Farr SA, Morley JE. The effects of high fat diets on the blood-brain barrier transport of leptin: Failure or adaptation? Physiol Behav. 2006;88(3):244–8. [PubMed] [Google Scholar]

157. Pallebage-Gamarallage M, Lam V, Takechi R, Galloway S, Clark K, Mamo J. Restoration of dietary-fat induced blood-brain barrier dysfunction by anti-inflammatory lipid-modulating agents. Lipids Health Dis. 2012;11:117. [PMC free article] [PubMed] [Google Scholar]

158. Puig KL, Floden AM, Adhikari R, Golovko MY, Combs CK. Amyloid precursor protein and proinflammatory changes are regulated in brain and adipose tissue in a murine model of high fat diet-induced obesity. PLoS One. 2012;7(1):e30378. [PMC free article] [PubMed] [Google Scholar]

159. Ross AP, Bruggeman EC, Kasumu AW, Mielke JG, Parent MB. Non-alcoholic fatty liver disease impairs hippocampal-dependent memory in male rats. Physiol Behav. 2012;106(2):133–41. [PubMed] [Google Scholar]

160. Joussen AM, Poulaki V, Le ML, Koizumi K, Esser C, Janicki H, et al. A central role for inflammation in the pathogenesis of diabetic retinopathy. Faseb j. 2004;18(12):1450–2. [PubMed] [Google Scholar]

161. Tsuda M, Inoue K, Salter MW. Neuropathic pain and spinal microglia: A big problem from molecules in “small” glia. Trends Neurosci. 2005;28(2):101–7. [PubMed] [Google Scholar]

162. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: Direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87–91. [PubMed] [Google Scholar]

163. Wolburg H, Lippoldt A. Tight junctions of the blood-brain barrier: Development, composition and regulation. Vascul Pharmacol. 2002;38(6):323–37. [PubMed] [Google Scholar]

164. Milanski M, Degasperi G, Coope A, Morari J, Denis R, Cintra DE, et al. Saturated fatty acids produce an inflammatory response predominantly through the activation of tlr4 signaling in hypothalamus: Implications for the pathogenesis of obesity. J Neurosci. 2009;29(2):359–70. [PMC free article] [PubMed] [Google Scholar]

165. Thaler JP, Choi SJ, Schwartz MW, Wisse BE. Hypothalamic inflammation and energy homeostasis: Resolving the paradox. Front Neuroendocrinol. 2010;31(1):79–84. [PubMed] [Google Scholar]

166. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011;333(6048):1456–8. [PubMed] [Google Scholar]

167. Andre C, Dinel AL, Ferreira G, Laye S, Castanon N. Diet-induced obesity progressively alters cognition, anxiety-like behavior and lipopolysaccharide-induced depressive-like behavior: Focus on brain indoleamine 2,3-dioxygenase activation. Brain Behav Immun. 2014;41:10–21. [PubMed] [Google Scholar]

168. Doolan KJ, Breslin G, Hanna D, Gallagher AM. Attentional bias to food-related visual cues: Is there a role in obesity? Proc Nutr Soc. 2015;74(1):37–45. [PubMed] [Google Scholar]

169. Leland DS, Pineda JA. Effects of food-related stimuli on visual spatial attention in fasting and nonfasting normal subjects: Behavior and electrophysiology. Clin Neurophysiol. 2006;117(1):67–84. [PubMed] [Google Scholar]

170. Placanica JL, Faunce GJ, Soames Job RF. The effect of fasting on attentional biases for food and body shape/weight words in high and low eating disorder inventory scorers. Int J Eat Disord. 2002;32(1):79–90. [PubMed] [Google Scholar]

171. Ahern AL, Field M, Yokum S, Bohon C, Stice E. Relation of dietary restraint scores to cognitive biases and reward sensitivity. Appetite. 2010;55(1):61–8. [PubMed] [Google Scholar]

172. Brignell C, Griffiths T, Bradley BP, Mogg K. Attentional and approach biases for pictorial food cues. Influence of external eating. Appetite. 2009;52(2):299–306. [PubMed] [Google Scholar]

173. Van Strien T, Schippers GM, Cox WM. On the relationship between emotional and external eating behavior. Addict Behav. 1995;20(5):585–94. [PubMed] [Google Scholar]

174. Castellanos EH, Charboneau E, Dietrich MS, Park S, Bradley BP, Mogg K, et al. Obese adults have visual attention bias for food cue images: Evidence for altered reward system function. Int J Obes (Lond) 2009;33(9):1063–73. [PubMed] [Google Scholar]

175. Corbetta M, Kincade JM, Shulman GL. Neural systems for visual orienting and their relationships to spatial working memory. J Cogn Neurosci. 2002;14(3):508–23. [PubMed] [Google Scholar]

176. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3(3):201–15. [PubMed] [Google Scholar]

177. Fuhrer D, Zysset S, Stumvoll M. Brain activity in hunger and satiety: An exploratory visually stimulated fmri study. Obesity (Silver Spring) 2008;16(5):945–50. [PubMed] [Google Scholar]

178. Schur EA, Kleinhans NM, Goldberg J, Buchwald D, Schwartz MW, Maravilla K. Activation in brain energy regulation and reward centers by food cues varies with choice of visual stimulus. Int J Obes (Lond) 2009;33(6):653–61. [PMC free article] [PubMed] [Google Scholar]

179. Tuulari JJ, Karlsson HK, Hirvonen J, Salminen P, Nuutila P, Nummenmaa L. Neural circuits for cognitive appetite control in healthy and obese individuals: An fmri study. PLoS One. 2015;10(2):e0116640. [PMC free article] [PubMed] [Google Scholar]

180. Schonberg T, Bakkour A, Hover AM, Mumford JA, Poldrack RA. Influencing food choices by training: Evidence for modulation of frontoparietal control signals. J Cogn Neurosci. 2014;26(2):247–68. [PMC free article] [PubMed] [Google Scholar]

181. Gearhardt AN, Yokum S, Stice E, Harris JL, Brownell KD. Relation of obesity to neural activation in response to food commercials. Soc Cogn Affect Neurosci. 2014;9(7):932–8. [PMC free article] [PubMed] [Google Scholar]

182. Cornier MA, McFadden KL, Thomas EA, Bechtell JL, Eichman LS, Bessesen DH, et al. Differences in the neuronal response to food in obesity-resistant as compared to obesity-prone individuals. Physiol Behav. 2013;110-111:122–8. [PMC free article] [PubMed] [Google Scholar]

183. Murdaugh DL, Cox JE, Cook EW, 3rd, Weller RE. Fmri reactivity to high-calorie food pictures predicts short- and long-term outcome in a weight-loss program. Neuroimage. 2012;59(3):2709–21. [PMC free article] [PubMed] [Google Scholar]

184. Aron AR. From reactive to proactive and selective control: Developing a richer model for stopping inappropriate responses. Biol Psychiatry. 2011;69(12):e55–68. [PMC free article] [PubMed] [Google Scholar]

185. Anzman-Frasca S, Francis LA, Birch LL. Inhibitory control is associated with psychosocial, cognitive, and weight outcomes in a longitudinal sample of girls. Trans Issues Psychol Sci. 2015;1(3):203–16. [PMC free article] [PubMed] [Google Scholar]

186. Blanco-Gomez A, Ferre N, Luque V, Cardona M, Gispert-Llaurado M, Escribano J, et al. Being overweight or obese is associated with inhibition control in children from six to ten years of age. Acta Paediatr. 2015;104(6):619–25. [PubMed] [Google Scholar]

187. Chamberlain SR, Derbyshire KL, Leppink E, Grant JE. Obesity and dissociable forms of impulsivity in young adults. CNS Spectr. 2015;20(5):500–7. [PubMed] [Google Scholar]

188. He Q, Xiao L, Xue G, Wong S, Ames SL, Schembre SM, et al. Poor ability to resist tempting calorie rich food is linked to altered balance between neural systems involved in urge and self-control. Nutr J. 2014;13:92. [PMC free article] [PubMed] [Google Scholar]

189. Khan NA, Raine LB, Drollette ES, Scudder MR, Cohen NJ, Kramer AF, et al. The relationship between total water intake and cognitive control among prepubertal children. Ann Nutr Metab. 2015;66(Suppl 3):38–41. [PubMed] [Google Scholar]

190. Kullmann S, Heni M, Veit R, Scheffler K, Machann J, Haring HU, et al. Selective insulin resistance in homeostatic and cognitive control brain areas in overweight and obese adults. Diabetes Care. 2015;38(6):1044–50. [PubMed] [Google Scholar]

191. Reyes S, Peirano P, Peigneux P, Lozoff B, Algarin C. Inhibitory control in otherwise healthy overweight 10-year-old children. Int J Obes (Lond) 2015;39(8):1230–5. [PMC free article] [PubMed] [Google Scholar]

192. Svaldi J, Naumann E, Trentowska M, Schmitz F. General and food-specific inhibitory deficits in binge eating disorder. Int J Eat Disord. 2014;47(5):534–42. [PubMed] [Google Scholar]

193. Wirt T, Hundsdorfer V, Schreiber A, Kesztyus D, Steinacker JM. Associations between inhibitory control and body weight in german primary school children. Eat Behav. 2014;15(1):9–12. [PubMed] [Google Scholar]

194. Wirt T, Schreiber A, Kesztyus D, Steinacker JM. Early life cognitive abilities and body weight: Cross-sectional study of the association of inhibitory control, cognitive flexibility, and sustained attention with bmi percentiles in primary school children. J Obes. 2015;2015:534651. [PMC free article] [PubMed] [Google Scholar]

195. Nederkoorn C, Jansen E, Mulkens S, Jansen A. Impulsivity predicts treatment outcome in obese children. Behav Res Ther. 2007;45(5):1071–5. [PubMed] [Google Scholar]

196. Camus M, Halelamien N, Plassmann H, Shimojo S, O'Doherty J, Camerer C, et al. Repetitive transcranial magnetic stimulation over the right dorsolateral prefrontal cortex decreases valuations during food choices. Eur J Neurosci. 2009;30(10):1980–8. [PubMed] [Google Scholar]

197. Hare TA, Camerer CF, Rangel A. Self-control in decision-making involves modulation of the vmpfc valuation system. Science. 2009;324(5927):646–8. [PubMed] [Google Scholar]

198. Chapman CD, Benedict C, Brooks SJ, Schioth HB. Lifestyle determinants of the drive to eat: A meta-analysis. Am J Clin Nutr. 2012;96(3):492–7. [PMC free article] [PubMed] [Google Scholar]

199. Volkow ND, Wang GJ, Fowler JS, Telang F. Overlapping neuronal circuits in addiction and obesity: Evidence of systems pathology. Philos Trans R Soc Lond B Biol Sci. 2008;363(1507):3191–200. [PMC free article] [PubMed] [Google Scholar]

200. Volkow ND, Wang GJ, Telang F, Fowler JS, Goldstein RZ, Alia-Klein N, et al. Inverse association between bmi and prefrontal metabolic activity in healthy adults. Obesity (Silver Spring) 2009;17(1):60–5. [PMC free article] [PubMed] [Google Scholar]

201. Willette AA, Kapogiannis D. Does the brain shrink as the waist expands? Ageing Res Rev. 2015;20:86–97. [PMC free article] [PubMed] [Google Scholar]

202. Alosco ML, Galioto R, Spitznagel MB, Strain G, Devlin M, Cohen R, et al. Cognitive function after bariatric surgery: Evidence for improvement 3 years after surgery. Am J Surg. 2014;207(6):870–6. [PMC free article] [PubMed] [Google Scholar]

What part of the brain is involved in eating?

The amygdala is the primary brain area regulating appetite with response to emotions. Indeed, the amygdala activates to food cues [124, 125], and this response is increased in childhood, adolescent, and adult obesity [126-129].

What side of the brain tells you to eat?

The lateral hypothalamus has been known for more than 50 years to be an important part of the brain for controlling eating.