What are 4 risk factors for stroke?

Medically Reviewed by Minesh Khatri, MD on November 15, 2021

A stroke happens when blood flow to a part of your brain is cut off. Without the oxygen in blood, brain cells start dying within minutes. To help prevent a stroke, learn about the causes and the things that can raise your odds of getting one.

A stroke can happen in two main ways: Something blocks the flow of blood, or something causes bleeding in the brain.

Ischemic stroke. In 8 out of 10 strokes, a blood vessel that takes blood to your brain gets plugged. It happens when fatty deposits in arteries break off and travel to the brain or when poor blood flow from an irregular heartbeat forms a blood clot.

Hemorrhagic stroke. It's less common than an ischemic stroke but can be more serious. A blood vessel in your brain balloons up and bursts, or a weakened one leaks. Uncontrolled high blood pressure and taking too much blood thinner medicine can lead to this kind of stroke.

Some people have what's called a transient ischemic attack (TIA). This "mini stroke" is due to a temporary blockage. It doesn't cause permanent brain damage, but it raises your odds of having a full-scale stroke.

You can treat some conditions that make you more likely to have a stroke. Other things that put you at risk can't be changed:

High blood pressure. Your doctor may call it hypertension. It's the biggest cause of strokes. If your blood pressure is typically 130/80 or higher, your doctor will discuss treatments with you.

Tobacco. Smoking or chewing it raises your odds of a stroke. Nicotine makes your blood pressure go up. Cigarette smoke causes a fatty buildup in your main neck artery. It also thickens your blood and makes it more likely to clot. Even secondhand smoke can affect you.

Heart disease. This condition includes defective heart valves as well as atrial fibrillation, or irregular heartbeat, which causes a quarter of all strokes among the very elderly. You can also have clogged arteries from fatty deposits.

Diabetes. People who have it often have high blood pressure and are more likely to be overweight. Both raise the chance of a stroke. Diabetes damages your blood vessels, which makes a stroke more likely. If you have a stroke when your blood sugar levels are high, the injury to your brain is greater.

Weight and exercise. Your chances of a stroke may go up if you're overweight. You can lower your odds by working out every day. Take a brisk 30-minute walk, or do muscle-strengthening exercises like pushups and working with weights.

Medications. Some medicines can raise your chances of stroke. For instance, blood-thinning drugs, which doctors suggest to prevent blood clots, can sometimes make a stroke more likely through bleeding. Studies have linked hormone therapy, used for menopause symptoms like hot flashes, with a higher risk of strokes. And low-dose estrogen in birth control pills may also make your odds go up.

Age. Anyone could have a stroke, even babies in the womb. Generally, your chances go up as you get older. They double every decade after age 55.

Family. Strokes can run in families. You and your relatives may share a tendency to get high blood pressure or diabetes. Some strokes can be brought on by a genetic disorder that blocks blood flow to the brain.

Gender. Women are slightly less likely to have a stroke than men of the same age. But women have strokes at a later age, which make them less likely to recover and more likely to die as a result.

Race. Strokes affect African-Americans and nonwhite Hispanic Americans much more often than any other group in the U.S. Sickle cell disease, a genetic condition that can narrow arteries and interrupt blood flow, is also more common in these groups and in people whose families came from the Mediterranean, the Middle East, or Asia.

© 2021 WebMD, LLC. All rights reserved. View privacy policy and trust info

Atherosclerosis & Stroke

Stroke is a heterogeneous syndrome, and determining risk factors and treatment depends on the specific pathogenesis of stroke. Risk factors for stroke can be categorized as modifiable and nonmodifiable. Age, sex, and race/ethnicity are nonmodifiable risk factors for both ischemic and hemorrhagic stroke, while hypertension, smoking, diet, and physical inactivity are among some of the more commonly reported modifiable risk factors. More recently described risk factors and triggers of stroke include inflammatory disorders, infection, pollution, and cardiac atrial disorders independent of atrial fibrillation. Single-gene disorders may cause rare, hereditary disorders for which stroke is a primary manifestation. Recent research also suggests that common and rare genetic polymorphisms can influence risk of more common causes of stroke, due to both other risk factors and specific stroke mechanisms, such as atrial fibrillation. Genetic factors, particularly those with environmental interactions, may be more modifiable than previously recognized. Stroke prevention has generally focused on modifiable risk factors. Lifestyle and behavioral modification, such as dietary changes or smoking cessation, not only reduces stroke risk, but also reduces the risk of other cardiovascular diseases. Other prevention strategies include identifying and treating medical conditions, such as hypertension and diabetes, that increase stroke risk. Recent research into risk factors and genetics of stroke has not only identified those at risk for stroke but also identified ways to target at-risk populations for stroke prevention.

References

  • 1. Roger VL, Go AS, Lloyd-Jones DM, et al.; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics–2011 update: a report from the American Heart Association.Circulation. 2011; 123:e18–e209. doi: 10.1161/CIR.0b013e3182009701.LinkGoogle Scholar
  • 2. Mozzafarian D, Benjamin EJ, Go AS, et al., on behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics–2016 update: a report from the American Heart Association.Circulation. 2016; 133:e38–e360.LinkGoogle Scholar
  • 3. Ovbiagele B, Goldstein LB, Higashida RT, Howard VJ, Johnston SC, Khavjou OA, Lackland DT, Lichtman JH, Mohl S, Sacco RL, Saver JL, Trogdon JG; American Heart Association Advocacy Coordinating Committee and Stroke Council. Forecasting the future of stroke in the United States: a policy statement from the American Heart Association and American Stroke Association.Stroke. 2013; 44:2361–2375. doi: 10.1161/STR.0b013e31829734f2.LinkGoogle Scholar
  • 4. Pearson TA, Palaniappan LP, Artinian NT, et al.; American Heart Association Council on Epidemiology and Prevention. American Heart Association Guide for Improving Cardiovascular Health at the Community Level, 2013 update: a scientific statement for public health practitioners, healthcare providers, and health policy makers.Circulation. 2013; 127:1730–1753. doi: 10.1161/CIR.0b013e31828f8a94.LinkGoogle Scholar
  • 5. Mozaffarian D, Benjamin EJ, Go AS, et al.; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics–2015 update: a report from the American Heart Association.Circulation. 2015; 131:e29–322. doi: 10.1161/CIR.0000000000000152.LinkGoogle Scholar
  • 6. Vermeer SE, Longstreth WT, Koudstaal PJ. Silent brain infarcts: a systematic review.Lancet Neurol. 2007; 6:611–619. doi: 10.1016/S1474-4422(07)70170-9.CrossrefMedlineGoogle Scholar
  • 7. Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review.Lancet Neurol. 2009; 8:355–369. doi: 10.1016/S1474-4422(09)70025-0.CrossrefMedlineGoogle Scholar
  • 8. Johnston SC, Mendis S, Mathers CD. Global variation in stroke burden and mortality: estimates from monitoring, surveillance, and modelling.Lancet Neurol. 2009; 8:345–354. doi: 10.1016/S1474-4422(09)70023-7.CrossrefMedlineGoogle Scholar
  • 9. Adams HP, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, Marsh EE. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment.Stroke. 1993; 24:35–41.LinkGoogle Scholar
  • 10. Tirschwell DL, Smith NL, Heckbert SR, Lemaitre RN, Longstreth WT, Psaty BM. Association of cholesterol with stroke risk varies in stroke subtypes and patient subgroups.Neurology. 2004; 63:1868–1875.CrossrefMedlineGoogle Scholar
  • 11. Zhao D, Liu J, Wang W, Zeng Z, Cheng J, Liu J, Sun J, Wu Z. Epidemiological transition of stroke in China: twenty-one-year observational study from the Sino-MONICA-Beijing Project.Stroke. 2008; 39:1668–1674. doi: 10.1161/STROKEAHA.107.502807.LinkGoogle Scholar
  • 12. Powers BJ, Danus S, Grubber JM, Olsen MK, Oddone EZ, Bosworth HB. The effectiveness of personalized coronary heart disease and stroke risk communication.Am Heart J. 2011; 161:673–680. doi: 10.1016/j.ahj.2010.12.021.CrossrefMedlineGoogle Scholar
  • 13. Grundy SM, Pasternak R, Greenland P, Smith S, Fuster V. AHA/ACC scientific statement: assessment of cardiovascular risk by use of multiple-risk-factor assessment equations: a statement for healthcare professionals from the American Heart Association and the American College of Cardiology.J Am Coll Cardiol. 1999; 34:1348–1359.CrossrefMedlineGoogle Scholar
  • 14. Pocock SJ, McCormack V, Gueyffier F, Boutitie F, Fagard RH, Boissel JP. A score for predicting risk of death from cardiovascular disease in adults with raised blood pressure, based on individual patient data from randomised controlled trials.BMJ. 2001; 323:75–81.CrossrefMedlineGoogle Scholar
  • 15. Wolf PA, D’Agostino RB, Belanger AJ, Kannel WB. Probability of stroke: a risk profile from the Framingham Study.Stroke. 1991; 22:312–318.LinkGoogle Scholar
  • 16. Den Ruijter HM, Peters SA, Anderson TJ, et al.. Common carotid intima-media thickness measurements in cardiovascular risk prediction: a meta-analysis.JAMA. 2012; 308:796–803. doi: 10.1001/jama.2012.9630.CrossrefMedlineGoogle Scholar
  • 17. D’Agostino RB, Wolf PA, Belanger AJ, Kannel WB. Stroke risk profile: adjustment for antihypertensive medication. The Framingham Study.Stroke. 1994; 25:40–43.LinkGoogle Scholar
  • 18. Wang TJ, Massaro JM, Levy D, Vasan RS, Wolf PA, D’Agostino RB, Larson MG, Kannel WB, Benjamin EJ. A risk score for predicting stroke or death in individuals with new-onset atrial fibrillation in the community: the Framingham Heart Study.JAMA. 2003; 290:1049–1056. doi: 10.1001/jama.290.8.1049.CrossrefMedlineGoogle Scholar
  • 19. Lumley T, Kronmal RA, Cushman M, Manolio TA, Goldstein S. A stroke prediction score in the elderly: validation and Web-based application.J Clin Epidemiol. 2002; 55:129–136.CrossrefMedlineGoogle Scholar
  • 20. Simons LA, McCallum J, Friedlander Y, Simons J. Risk factors for ischemic stroke: Dubbo Study of the elderly.Stroke. 1998; 29:1341–1346.LinkGoogle Scholar
  • 21. Chien KL, Su TC, Hsu HC, Chang WT, Chen PC, Sung FC, Chen MF, Lee YT. Constructing the prediction model for the risk of stroke in a Chinese population: report from a cohort study in Taiwan.Stroke. 2010; 41:1858–1864. doi: 10.1161/STROKEAHA.110.586222.LinkGoogle Scholar
  • 22. Lackland DT, Elkind MS, D’Agostino R, Dhamoon MS, Goff DC, Higashida RT, McClure LA, Mitchell PH, Sacco RL, Sila CA, Smith SC, Tanne D, Tirschwell DL, Touzé E, Wechsler LR; American Heart Association Stroke Council; Council on Epidemiology and Prevention; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular Nursing; Council on Peripheral Vascular Disease; Council on Quality of Care and Outcomes Research. Inclusion of stroke in cardiovascular risk prediction instruments: a statement for healthcare professionals from the American Heart Association/American Stroke Association.Stroke. 2012; 43:1998–2027. doi: 10.1161/STR.0b013e31825bcdac.LinkGoogle Scholar
  • 23. Yeboah J, Young R, McClelland RL, Delaney JC, Polonsky TS, Dawood FZ, Blaha MJ, Miedema MD, Sibley CT, Carr JJ, Burke GL, Goff DC, Psaty BM, Greenland P, Herrington DM. Utility of nontraditional risk markers in atherosclerotic cardiovascular disease risk assessment.J Am Coll Cardiol. 2016; 67:139–147. doi: 10.1016/j.jacc.2015.10.058.CrossrefMedlineGoogle Scholar
  • 24. O’Donnell MJ, Xavier D, Liu L, et al.; INTERSTROKE investigators. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study.Lancet. 2010; 376:112–123. doi: 10.1016/S0140-6736(10)60834-3.CrossrefMedlineGoogle Scholar
  • 25. Go AS, Mozaffarian D, Roger VL, et al.; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics–2013 update: a report from the American Heart Association.Circulation. 2013; 127:e6–e245. doi: 10.1161/CIR.0b013e31828124ad.LinkGoogle Scholar
  • 26. Elkind MS. Why now? Moving from stroke risk factors to stroke triggers.Curr Opin Neurol. 2007; 20:51–57. doi: 10.1097/WCO.0b013e328012da75.CrossrefMedlineGoogle Scholar
  • 27. Roger VL, Go AS, Lloyd-Jones DM, et al.; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Executive summary: heart disease and stroke statistics–2012 update: a report from the American Heart Association.Circulation. 2012; 125:188–197. doi: 10.1161/CIR.0b013e3182456d46.LinkGoogle Scholar
  • 28. Kissela BM, Khoury JC, Alwell K, Moomaw CJ, Woo D, Adeoye O, Flaherty ML, Khatri P, Ferioli S, De Los Rios La Rosa F, Broderick JP, Kleindorfer DO. Age at stroke: temporal trends in stroke incidence in a large, biracial population.Neurology. 2012; 79:1781–1787. doi: 10.1212/WNL.0b013e318270401d.CrossrefMedlineGoogle Scholar
  • 29. George MG, Tong X, Kuklina EV, Labarthe DR. Trends in stroke hospitalizations and associated risk factors among children and young adults, 1995-2008.Ann Neurol. 2011; 70:713–721. doi: 10.1002/ana.22539.CrossrefMedlineGoogle Scholar
  • 30. van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, Klijn CJ. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis.Lancet Neurol. 2010; 9:167–176. doi: 10.1016/S1474-4422(09)70340-0.CrossrefMedlineGoogle Scholar
  • 31. Kapral MK, Fang J, Hill MD, Silver F, Richards J, Jaigobin C, Cheung AM; Investigators of the Registry of the Canadian Stroke Network. Sex differences in stroke care and outcomes: results from the Registry of the Canadian Stroke Network.Stroke. 2005; 36:809–814. doi: 10.1161/01.STR.0000157662.09551.e5.LinkGoogle Scholar
  • 32. Reeves MJ, Fonarow GC, Zhao X, Smith EE, Schwamm LH; Get With The Guidelines-Stroke Steering Committee & Investigators. Quality of care in women with ischemic stroke in the GWTG program.Stroke. 2009; 40:1127–1133. doi: 10.1161/STROKEAHA.108.543157.LinkGoogle Scholar
  • 33. Asplund K, Karvanen J, Giampaoli S, et al.; MORGAM Project. Relative risks for stroke by age, sex, and population based on follow-up of 18 European populations in the MORGAM Project.Stroke. 2009; 40:2319–2326. doi: 10.1161/STROKEAHA.109.547869.LinkGoogle Scholar
  • 34. Cruz-Flores S, Rabinstein A, Biller J, Elkind MS, Griffith P, Gorelick PB, Howard G, Leira EC, Morgenstern LB, Ovbiagele B, Peterson E, Rosamond W, Trimble B, Valderrama AL; American Heart Association Stroke Council; Council on Cardiovascular Nursing; Council on Epidemiology and Prevention; Council on Quality of Care and Outcomes Research. Racial-ethnic disparities in stroke care: the American experience: a statement for healthcare professionals from the American Heart Association/American Stroke Association.Stroke. 2011; 42:2091–2116. doi: 10.1161/STR.0b013e3182213e24.LinkGoogle Scholar
  • 35. Gillum RF. Stroke mortality in blacks. Disturbing trends.Stroke. 1999; 30:1711–1715.LinkGoogle Scholar
  • 36. Howard G, Howard VJ; REasons for Geographic And Racial Differences in Stroke (REGARDS) Investigators. Ethnic disparities in stroke: the scope of the problem.Ethn Dis. 2001; 11:761–768.MedlineGoogle Scholar
  • 37. Kleindorfer D, Broderick J, Khoury J, Flaherty M, Woo D, Alwell K, Moomaw CJ, Schneider A, Miller R, Shukla R, Kissela B. The unchanging incidence and case-fatality of stroke in the 1990s: a population-based study.Stroke. 2006; 37:2473–2478. doi: 10.1161/01.STR.0000242766.65550.92.LinkGoogle Scholar
  • 38. Cooper ES. Cardiovascular diseases and stroke in African Americans: a call for action.J Natl Med Assoc. 1993; 85:97–100.MedlineGoogle Scholar
  • 39. Kissela B, Schneider A, Kleindorfer D, Khoury J, Miller R, Alwell K, Woo D, Szaflarski J, Gebel J, Moomaw C, Pancioli A, Jauch E, Shukla R, Broderick J. Stroke in a biracial population: the excess burden of stroke among blacks.Stroke. 2004; 35:426–431. doi: 10.1161/01.STR.0000110982.74967.39.LinkGoogle Scholar
  • 40. Sacco RL, Boden-Albala B, Gan R, Chen X, Kargman DE, Shea S, Paik MC, Hauser WA. Stroke incidence among white, black, and Hispanic residents of an urban community: the Northern Manhattan Stroke Study.Am J Epidemiol. 1998; 147:259–268.CrossrefMedlineGoogle Scholar
  • 41. Howard G, Anderson R, Sorlie P, Andrews V, Backlund E, Burke GL. Ethnic differences in stroke mortality between non-Hispanic whites, Hispanic whites, and blacks. The National Longitudinal Mortality Study.Stroke. 1994; 25:2120–2125.LinkGoogle Scholar
  • 42. Morgenstern LB, Smith MA, Lisabeth LD, Risser JM, Uchino K, Garcia N, Longwell PJ, McFarling DA, Akuwumi O, Al-Wabil A, Al-Senani F, Brown DL, Moyé LA. Excess stroke in Mexican Americans compared with non-Hispanic Whites: the Brain Attack Surveillance in Corpus Christi Project.Am J Epidemiol. 2004; 160:376–383. doi: 10.1093/aje/kwh225.CrossrefMedlineGoogle Scholar
  • 43. Zahuranec DB, Brown DL, Lisabeth LD, Gonzales NR, Longwell PJ, Eden SV, Smith MA, Garcia NM, Morgenstern LB. Differences in intracerebral hemorrhage between Mexican Americans and non-Hispanic whites.Neurology. 2006; 66:30–34. doi: 10.1212/01.wnl.0000191402.41914.d2.CrossrefMedlineGoogle Scholar
  • 44. Zhang Y, Galloway JM, Welty TK, Wiebers DO, Whisnant JP, Devereux RB, Kizer JR, Howard BV, Cowan LD, Yeh J, Howard WJ, Wang W, Best L, Lee ET. Incidence and risk factors for stroke in American Indians: the Strong Heart Study.Circulation. 2008; 118:1577–1584. doi: 10.1161/CIRCULATIONAHA.108.772285.LinkGoogle Scholar
  • 45. Giles WH, Kittner SJ, Hebel JR, Losonczy KG, Sherwin RW. Determinants of black-white differences in the risk of cerebral infarction. The National Health and Nutrition Examination Survey Epidemiologic Follow-up Study.Arch Intern Med. 1995; 155:1319–1324.CrossrefMedlineGoogle Scholar
  • 46. Gillum RF. Risk factors for stroke in blacks: a critical review.Am J Epidemiol. 1999; 150:1266–1274.CrossrefMedlineGoogle Scholar
  • 47. Kittner SJ, White LR, Losonczy KG, Wolf PA, Hebel JR. Black-white differences in stroke incidence in a national sample. The contribution of hypertension and diabetes mellitus.JAMA. 1990; 264:1267–1270.CrossrefMedlineGoogle Scholar
  • 48. Liao Y, Greenlund KJ, Croft JB, Keenan NL, Giles WH. Factors explaining excess stroke prevalence in the US Stroke Belt.Stroke. 2009; 40:3336–3341. doi: 10.1161/STROKEAHA.109.561688.LinkGoogle Scholar
  • 49. Feinstein M, Ning H, Kang J, Bertoni A, Carnethon M, Lloyd-Jones DM. Racial differences in risks for first cardiovascular events and noncardiovascular death: the Atherosclerosis Risk in Communities study, the Cardiovascular Health Study, and the Multi-Ethnic Study of Atherosclerosis.Circulation. 2012; 126:50–59. doi: 10.1161/CIRCULATIONAHA.111.057232.LinkGoogle Scholar
  • 50. Glasser SP, Judd S, Basile J, Lackland D, Halanych J, Cushman M, Prineas R, Howard V, Howard G. Prehypertension, racial prevalence and its association with risk factors: analysis of the REasons for Geographic And Racial Differences in Stroke (REGARDS) study.Am J Hypertens. 2011; 24:194–199. doi: 10.1038/ajh.2010.204.CrossrefMedlineGoogle Scholar
  • 51. Howard G, Safford MM, Moy CS, Howard VJ, Kleindorfer DO, Unverzagt FW, et al.. Racial differences in the incidence of cardiovascular risk factors in older black and white adults [published online ahead of print September 26, 2016].J Am Geriatr Soc. doi: 10.1111/jgs.14472.Google Scholar
  • 52. Howard VJ, Kleindorfer DO, Judd SE, McClure LA, Safford MM, Rhodes JD, Cushman M, Moy CS, Soliman EZ, Kissela BM, Howard G. Disparities in stroke incidence contributing to disparities in stroke mortality.Ann Neurol. 2011; 69:619–627. doi: 10.1002/ana.22385.CrossrefMedlineGoogle Scholar
  • 53. Joubert J, Prentice LF, Moulin T, Liaw ST, Joubert LB, Preux PM, Ware D, Medeiros de Bustos E, McLean A. Stroke in rural areas and small communities.Stroke. 2008; 39:1920–1928. doi: 10.1161/STROKEAHA.107.501643.LinkGoogle Scholar
  • 54. Stansbury JP, Jia H, Williams LS, Vogel WB, Duncan PW. Ethnic disparities in stroke: epidemiology, acute care, and postacute outcomes.Stroke. 2005; 36:374–386. doi: 10.1161/01.STR.0000153065.39325.fd.LinkGoogle Scholar
  • 55. Kimball MM, Neal D, Waters MF, Hoh BL. Race and income disparity in ischemic stroke care: nationwide inpatient sample database, 2002 to 2008.J Stroke Cerebrovasc Dis. 2014; 23:17–24. doi: 10.1016/j.jstrokecerebrovasdis.2012.06.004.CrossrefMedlineGoogle Scholar
  • 56. Jabłecki J, Kaczmarzyk L, Domanasiewicz A, Paruzel M. [Management of soft tissue defects in the region of finger PIP joints by means of pedicular skin flaps taken from abdomen].Chir Narzadow Ruchu Ortop Pol. 2006; 71:205–209.MedlineGoogle Scholar
  • 57. Greer S, Casper M, Kramer M, Schwartz G, Hallisey E, Holt J, Clarkson L, Zhou Y, Freymann G. Racial residential segregation and stroke mortality in Atlanta.Ethn Dis. 2011; 21:437–443.MedlineGoogle Scholar
  • 58. Kleindorfer D, Lindsell C, Alwell KA, Moomaw CJ, Woo D, Flaherty ML, Khatri P, Adeoye O, Ferioli S, Kissela BM. Patients living in impoverished areas have more severe ischemic strokes.Stroke. 2012; 43:2055–2059. doi: 10.1161/STROKEAHA.111.649608.LinkGoogle Scholar
  • 59. Moon JR, Capistrant BD, Kawachi I, Avendaño M, Subramanian SV, Bates LM, Glymour MM. Stroke incidence in older US Hispanics: is foreign birth protective?Stroke. 2012; 43:1224–1229. doi: 10.1161/STROKEAHA.111.643700.LinkGoogle Scholar
  • 60. Howard G, Moy CS, Howard VJ, McClure LA, Kleindorfer DO, Kissela BM, Judd SE, Unverzagt FW, Soliman EZ, Safford MM, Cushman M, Flaherty ML, Wadley VG; REGARDS Investigators*. Where to focus efforts to reduce the black- white disparity in stroke mortality: incidence versus case fatality?Stroke. 2016; 47:1893–1898. doi: 10.1161/STROKEAHA.115.012631.LinkGoogle Scholar
  • 61. Howard G, Kissela BM, Kleindorfer DO, McClure LA, Soliman EZ, Judd SE, Rhodes JD, Cushman M, Moy CS, Sands KA, Howard VJ. Differences in the role of black race and stroke risk factors for first vs. recurrent stroke.Neurology. 2016; 86:637–642. doi: 10.1212/WNL.0000000000002376.CrossrefMedlineGoogle Scholar
  • 62. Seshadri S, Beiser A, Pikula A, Himali JJ, Kelly-Hayes M, Debette S, DeStefano AL, Romero JR, Kase CS, Wolf PA. Parental occurrence of stroke and risk of stroke in their children: the Framingham study.Circulation. 2010; 121:1304–1312. doi: 10.1161/CIRCULATIONAHA.109.854240.LinkGoogle Scholar
  • 63. Schulz UG, Flossmann E, Rothwell PM. Heritability of ischemic stroke in relation to age, vascular risk factors, and subtypes of incident stroke in population-based studies.Stroke. 2004; 35:819–824. doi: 10.1161/01.STR.0000121646.23955.0f.LinkGoogle Scholar
  • 64. Touzé E, Rothwell PM. Sex differences in heritability of ischemic stroke: a systematic review and meta-analysis.Stroke. 2008; 39:16–23. doi: 10.1161/STROKEAHA.107.484618.LinkGoogle Scholar
  • 65. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, Jones DW, Materson BJ, Oparil S, Wright JT, Roccella EJ; National Heart, Lung, and Blood Institute Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure; National High Blood Pressure Education Program Coordinating Committee. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report.JAMA. 2003; 289:2560–2572. doi: 10.1001/jama.289.19.2560.CrossrefMedlineGoogle Scholar
  • 66. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R; Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies.Lancet. 2002; 360:1903–1913.CrossrefMedlineGoogle Scholar
  • 67. Burt VL, Whelton P, Roccella EJ, Brown C, Cutler JA, Higgins M, Horan MJ, Labarthe D. Prevalence of hypertension in the US adult population. Results from the Third National Health and Nutrition Examination Survey, 1988-1991.Hypertension. 1995; 25:305–313.LinkGoogle Scholar
  • 68. Vasan RS, Beiser A, Seshadri S, Larson MG, Kannel WB, D’Agostino RB, Levy D. Residual lifetime risk for developing hypertension in middle-aged women and men: The Framingham Heart Study.JAMA. 2002; 287:1003–1010.CrossrefMedlineGoogle Scholar
  • 69. Fields LE, Burt VL, Cutler JA, Hughes J, Roccella EJ, Sorlie P. The burden of adult hypertension in the United States 1999 to 2000: a rising tide.Hypertension. 2004; 44:398–404. doi: 10.1161/01.HYP.0000142248.54761.56.LinkGoogle Scholar
  • 70. Egan BM, Zhao Y, Axon RN. US trends in prevalence, awareness, treatment, and control of hypertension, 1988-2008.JAMA. 2010; 303:2043–2050. doi: 10.1001/jama.2010.650.CrossrefMedlineGoogle Scholar
  • 71. Rothwell PM, Howard SC, Dolan E, O’Brien E, Dobson JE, Dahlöf B, Sever PS, Poulter NR. Prognostic significance of visit-to-visit variability, maximum systolic blood pressure, and episodic hypertension.Lancet. 2010; 375:895–905. doi: 10.1016/S0140-6736(10)60308-X.CrossrefMedlineGoogle Scholar
  • 72. Suchy-Dicey AM, Wallace ER, Mitchell SV, Aguilar M, Gottesman RF, Rice K, Kronmal R, Psaty BM, Longstreth WT. Blood pressure variability and the risk of all-cause mortality, incident myocardial infarction, and incident stroke in the cardiovascular health study.Am J Hypertens. 2013; 26:1210–1217. doi: 10.1093/ajh/hpt092.CrossrefMedlineGoogle Scholar
  • 73. Banerjee C, Moon YP, Paik MC, Rundek T, Mora-McLaughlin C, Vieira JR, Sacco RL, Elkind MS. Duration of diabetes and risk of ischemic stroke: the Northern Manhattan Study.Stroke. 2012; 43:1212–1217. doi: 10.1161/STROKEAHA.111.641381.LinkGoogle Scholar
  • 74. Sui X, Lavie CJ, Hooker SP, Lee DC, Colabianchi N, Lee CD, Blair SN. A prospective study of fasting plasma glucose and risk of stroke in asymptomatic men.Mayo Clin Proc. 2011; 86:1042–1049. doi: 10.4065/mcp.2011.0267.CrossrefMedlineGoogle Scholar
  • 75. Utsumi H, Elkind MM. Potentially lethal damage, deficient repair in X-ray-sensitive caffeine-responsive Chinese hamster cells.Radiat Res. 1986; 107:95–106.CrossrefMedlineGoogle Scholar
  • 76. Kissela BM, Khoury J, Kleindorfer D, Woo D, Schneider A, Alwell K, Miller R, Ewing I, Moomaw CJ, Szaflarski JP, Gebel J, Shukla R, Broderick JP. Epidemiology of ischemic stroke in patients with diabetes: the greater Cincinnati/Northern Kentucky Stroke Study.Diabetes Care. 2005; 28:355–359.CrossrefMedlineGoogle Scholar
  • 77. Gaede P, Lund-Andersen H, Parving HH, Pedersen O. Effect of a multifactorial intervention on mortality in type 2 diabetes.N Engl J Med. 2008; 358:580–591. doi: 10.1056/NEJMoa0706245.CrossrefMedlineGoogle Scholar
  • 78. Anselmino M, Malmberg K, Ohrvik J, Rydén L; Euro Heart Survey Investigators. Evidence-based medication and revascularization: powerful tools in the management of patients with diabetes and coronary artery disease: a report from the Euro Heart Survey on diabetes and the heart.Eur J Cardiovasc Prev Rehabil. 2008; 15:216–223. doi: 10.1097/HJR.0b013e3282f335d0.CrossrefMedlineGoogle Scholar
  • 79. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes.N Engl J Med. 2008; 359:1577–1589. doi: 10.1056/NEJMoa0806470.CrossrefMedlineGoogle Scholar
  • 80. Gray CS, Hildreth AJ, Sandercock PA, O’Connell JE, Johnston DE, Cartlidge NE, Bamford JM, James OF, Alberti KG; GIST Trialists Collaboration. Glucose-potassium-insulin infusions in the management of post-stroke hyperglycaemia: the UK Glucose Insulin in Stroke Trial (GIST-UK).Lancet Neurol. 2007; 6:397–406. doi: 10.1016/S1474-4422(07)70080-7.CrossrefMedlineGoogle Scholar
  • 81. Yiin GS, Howard DP, Paul NL, Li L, Luengo-Fernandez R, Bull LM, Welch SJ, Gutnikov SA, Mehta Z, Rothwell PM; Oxford Vascular Study. Age-specific incidence, outcome, cost, and projected future burden of atrial fibrillation-related embolic vascular events: a population-based study.Circulation. 2014; 130:1236–1244. doi: 10.1161/CIRCULATIONAHA.114.010942.LinkGoogle Scholar
  • 82. Brambatti M, Connolly SJ, Gold MR, et al.; ASSERT Investigators. Temporal relationship between subclinical atrial fibrillation and embolic events.Circulation. 2014; 129:2094–2099. doi: 10.1161/CIRCULATIONAHA.113.007825.LinkGoogle Scholar
  • 83. Kamel H, Elkind MS, Bhave PD, Navi BB, Okin PM, Iadecola C, Devereux RB, Fink ME. Paroxysmal supraventricular tachycardia and the risk of ischemic stroke.Stroke. 2013; 44:1550–1554. doi: 10.1161/STROKEAHA.113.001118.LinkGoogle Scholar
  • 84. Disertori M, Quintarelli S, Grasso M, et al.. Autosomal recessive atrial dilated cardiomyopathy with standstill evolution associated with mutation of Natriuretic Peptide Precursor A.Circ Cardiovasc Genet. 2013; 6:27–36. doi: 10.1161/CIRCGENETICS.112.963520.LinkGoogle Scholar
  • 85. O’Neal WT, Kamel H, Kleindorfer D, Judd SE, Howard G, Howard VJ, Soliman EZ. Premature atrial contractions on the screening electrocardiogram and risk of ischemic stroke: the Reasons for Geographic and Racial Differences in Stroke study.Neuroepidemiology. 2016; 47:53–58. doi: 10.1159/000448619.CrossrefMedlineGoogle Scholar
  • 86. Kamel H, Hunter M, Moon YP, Yaghi S, Cheung K, Di Tullio MR, Okin PM, Sacco RL, Soliman EZ, Elkind MS. Electrocardiographic left atrial abnormality and risk of stroke: Northern Manhattan Study.Stroke. 2015; 46:3208–3212. doi: 10.1161/STROKEAHA.115.009989.LinkGoogle Scholar
  • 87. Kamel H, O’Neal WT, Okin PM, Loehr LR, Alonso A, Soliman EZ. Electrocardiographic left atrial abnormality and stroke subtype in the atherosclerosis risk in communities study.Ann Neurol. 2015; 78:670–678. doi: 10.1002/ana.24482.CrossrefMedlineGoogle Scholar
  • 88. Okin PM, Kamel H, Kjeldsen SE, Devereux RB. Electrocardiographic left atrial abnormalities and risk of incident stroke in hypertensive patients with electrocardiographic left ventricular hypertrophy.J Hypertens. 2016; 34:1831–1837. doi: 10.1097/HJH.0000000000000989.CrossrefMedlineGoogle Scholar
  • 89. Kamel H, Okin PM, Elkind MS, Iadecola C. Atrial fibrillation and mechanisms of stroke: time for a new model.Stroke. 2016; 47:895–900. doi: 10.1161/STROKEAHA.115.012004.LinkGoogle Scholar
  • 90. Longstreth WT, Kronmal RA, Thompson JL, Christenson RH, Levine SR, Gross R, Brey RL, Buchsbaum R, Elkind MS, Tirschwell DL, Seliger SL, Mohr JP, deFilippi CR. Amino terminal pro-B-type natriuretic peptide, secondary stroke prevention, and choice of antithrombotic therapy.Stroke. 2013; 44:714–719. doi: 10.1161/STROKEAHA.112.675942.LinkGoogle Scholar
  • 91. Horenstein RB, Smith DE, Mosca L. Cholesterol predicts stroke mortality in the Women’s Pooling Project.Stroke. 2002; 33:1863–1868.LinkGoogle Scholar
  • 92. Kurth T, Everett BM, Buring JE, Kase CS, Ridker PM, Gaziano JM. Lipid levels and the risk of ischemic stroke in women.Neurology. 2007; 68:556–562. doi: 10.1212/01.wnl.0000254472.41810.0d.CrossrefMedlineGoogle Scholar
  • 93. Lindenstrøm E, Boysen G, Nyboe J. Influence of total cholesterol, high density lipoprotein cholesterol, and triglycerides on risk of cerebrovascular disease: the Copenhagen City Heart Study.BMJ. 1994; 309:11–15.CrossrefMedlineGoogle Scholar
  • 94. Soyama Y, Miura K, Morikawa Y, Nishijo M, Nakanishi Y, Naruse Y, Kagamimori S, Nakagawa H; Oyabe Study. High-density lipoprotein cholesterol and risk of stroke in Japanese men and women: the Oyabe Study.Stroke. 2003; 34:863–868. doi: 10.1161/01.STR.0000060869.34009.38.LinkGoogle Scholar
  • 95. Tanne D, Yaari S, Goldbourt U. High-density lipoprotein cholesterol and risk of ischemic stroke mortality. A 21-year follow-up of 8586 men from the Israeli Ischemic Heart Disease Study.Stroke. 1997; 28:83–87.LinkGoogle Scholar
  • 96. Wannamethee SG, Shaper AG, Ebrahim S. HDL- cholesterol, total cholesterol, and the risk of stroke in middle-aged British men.Stroke. 2000; 31:1882–1888.LinkGoogle Scholar
  • 97. Sacco RL, Benson RT, Kargman DE, Boden-Albala B, Tuck C, Lin IF, Cheng JF, Paik MC, Shea S, Berglund L. High-density lipoprotein cholesterol and ischemic stroke in the elderly: the Northern Manhattan Stroke Study.JAMA. 2001; 285:2729–2735.CrossrefMedlineGoogle Scholar
  • 98. Iso H, Jacobs DR, Wentworth D, Neaton JD, Cohen JD. Serum cholesterol levels and six-year mortality from stroke in 350,977 men screened for the multiple risk factor intervention trial.N Engl J Med. 1989; 320:904–910. doi: 10.1056/NEJM198904063201405.CrossrefMedlineGoogle Scholar
  • 99. Zhang X, Patel A, Horibe H, Wu Z, Barzi F, Rodgers A, MacMahon S, Woodward M; Asia Pacific Cohort Studies Collaboration. Cholesterol, coronary heart disease, and stroke in the Asia Pacific region.Int J Epidemiol. 2003; 32:563–572.CrossrefMedlineGoogle Scholar
  • 100. Iribarren C, Jacobs DR, Sadler M, Claxton AJ, Sidney S. Low total serum cholesterol and intracerebral hemorrhagic stroke: is the association confined to elderly men? The Kaiser Permanente Medical Care Program.Stroke. 1996; 27:1993–1998.LinkGoogle Scholar
  • 101. Hackam DG, Austin PC, Huang A, Juurlink DN, Mamdani MM, Paterson JM, Hachinski V, Li P, Kapral MK. Statins and intracerebral hemorrhage: a retrospective cohort study.Arch Neurol. 2012; 69:39–45. doi: 10.1001/archneurol.2011.228.CrossrefMedlineGoogle Scholar
  • 102. Amarenco P, Labreuche J, Lavallée P, Touboul PJ. Statins in stroke prevention and carotid atherosclerosis: systematic review and up-to-date meta-analysis.Stroke. 2004; 35:2902–2909. doi: 10.1161/01.STR.0000147965.52712.fa.LinkGoogle Scholar
  • 103. Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, Kirby A, Sourjina T, Peto R, Collins R, Simes R; Cholesterol Treatment Trialists’ (CTT) Collaborators. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins.Lancet. 2005; 366:1267–1278. doi: 10.1016/S0140-6736(05)67394-1.CrossrefMedlineGoogle Scholar
  • 104. Lauer A, Greenberg SM, Gurol ME. Statins in intracerebral hemorrhage.Curr Atheroscler Rep. 2015; 17:46. doi: 10.1007/s11883-015-0526-5.CrossrefMedlineGoogle Scholar
  • 105. Goldstein LB, Amarenco P, Szarek M, Callahan A, Hennerici M, Sillesen H, Zivin JA, Welch KM; SPARCL Investigators. Hemorrhagic stroke in the Stroke Prevention by Aggressive Reduction in Cholesterol Levels study.Neurology. 2008; 70:2364–2370. doi: 10.1212/01.wnl.0000296277.63350.77.CrossrefMedlineGoogle Scholar
  • 106. Zhou ML, Zhu L, Wang J, Hang CH, Shi JX. The inflammation in the gut after experimental subarachnoid hemorrhage.J Surg Res. 2007; 137:103–108. doi: 10.1016/j.jss.2006.06.023.CrossrefMedlineGoogle Scholar
  • 107. Manson JE, Colditz GA, Stampfer MJ, Willett WC, Krolewski AS, Rosner B, Arky RA, Speizer FE, Hennekens CH. A prospective study of maturity-onset diabetes mellitus and risk of coronary heart disease and stroke in women.Arch Intern Med. 1991; 151:1141–1147.CrossrefMedlineGoogle Scholar
  • 108. Appel LJ, Brands MW, Daniels SR, Karanja N, Elmer PJ, Sacks FM; American Heart Association. Dietary approaches to prevent and treat hypertension: a scientific statement from the American Heart Association.Hypertension. 2006; 47:296–308. doi: 10.1161/01.HYP.0000202568.01167.B6.LinkGoogle Scholar
  • 109. Appel LJ, Angell SY, Cobb LK, Limper HM, Nelson DE, Samet JM, Brownson RC. Population-wide sodium reduction: the bumpy road from evidence to policy.Ann Epidemiol. 2012; 22:417–425. doi: 10.1016/j.annepidem.2012.04.003.CrossrefMedlineGoogle Scholar
  • 110. Perry IJ, Beevers DG. Salt intake and stroke: a possible direct effect.J Hum Hypertens. 1992; 6:23–25.MedlineGoogle Scholar
  • 111. He J, Ogden LG, Vupputuri S, Bazzano LA, Loria C, Whelton PK. Dietary sodium intake and subsequent risk of cardiovascular disease in overweight adults.JAMA. 1999; 282:2027–2034.CrossrefMedlineGoogle Scholar
  • 112. Nagata C, Takatsuka N, Shimizu N, Shimizu H. Sodium intake and risk of death from stroke in Japanese men and women.Stroke. 2004; 35:1543–1547. doi: 10.1161/01.STR.0000130425.50441.b0.LinkGoogle Scholar
  • 113. Li XY, Cai XL, Bian PD, Hu LR. High salt intake and stroke: meta-analysis of the epidemiologic evidence.CNS Neurosci Ther. 2012; 18:691–701. doi: 10.1111/j.1755-5949.2012.00355.x.CrossrefMedlineGoogle Scholar
  • 114. Strazzullo P, D’Elia L, Kandala NB, Cappuccio FP. Salt intake, stroke, and cardiovascular disease: meta-analysis of prospective studies.BMJ. 2009; 339:b4567.CrossrefMedlineGoogle Scholar
  • 115. Ascherio A, Rimm EB, Hernán MA, Giovannucci EL, Kawachi I, Stampfer MJ, Willett WC. Intake of potassium, magnesium, calcium, and fiber and risk of stroke among US men.Circulation. 1998; 98:1198–1204.LinkGoogle Scholar
  • 116. Khaw KT, Barrett-Connor E. Dietary potassium and stroke-associated mortality. A 12-year prospective population study.N Engl J Med. 1987; 316:235–240. doi: 10.1056/NEJM198701293160502.CrossrefMedlineGoogle Scholar
  • 117. D’Elia L, Barba G, Cappuccio FP, Strazzullo P. Potassium intake, stroke, and cardiovascular disease a meta-analysis of prospective studies.J Am Coll Cardiol. 2011; 57:1210–1219. doi: 10.1016/j.jacc.2010.09.070.CrossrefMedlineGoogle Scholar
  • 118. Larsson SC, Orsini N, Wolk A. Dietary potassium intake and risk of stroke: a dose-response meta-analysis of prospective studies.Stroke. 2011; 42:2746–2750. doi: 10.1161/STROKEAHA.111.622142.LinkGoogle Scholar
  • 119. Estruch R, Ros E, Salas-Salvadó J, et al.; PREDIMED Study Investigators. Primary prevention of cardiovascular disease with a Mediterranean diet.N Engl J Med. 2013; 368:1279–1290. doi: 10.1056/NEJMoa1200303.CrossrefMedlineGoogle Scholar
  • 120. He FJ, Nowson CA, MacGregor GA. Fruit and vegetable consumption and stroke: meta-analysis of cohort studies.Lancet. 2006; 367:320–326. doi: 10.1016/S0140-6736(06)68069-0.CrossrefMedlineGoogle Scholar
  • 121. Suk SH, Sacco RL, Boden-Albala B, Cheun JF, Pittman JG, Elkind MS, Paik MC; Northern Manhattan Stroke Study. Abdominal obesity and risk of ischemic stroke: the Northern Manhattan Stroke Study.Stroke. 2003; 34:1586–1592. doi: 10.1161/01.STR.0000075294.98582.2F.LinkGoogle Scholar
  • 122. Walker SP, Rimm EB, Ascherio A, Kawachi I, Stampfer MJ, Willett WC. Body size and fat distribution as predictors of stroke among US men.Am J Epidemiol. 1996; 144:1143–1150.CrossrefMedlineGoogle Scholar
  • 123. Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration (BMI Mediated Effects), Lu Y, Hajifathalian K, Ezzati M, Woodward M, Rimm EB, et al.. Metabolic mediators of the effects of body-mass index, overweight, and obesity on coronary heart disease and stroke: a pooled analysis of 97 prospective cohorts with 1.8 million participants.Lancet. 2014; 383:970–983. doi: 10.1016/S0140-6736(13)61836-X.CrossrefMedlineGoogle Scholar
  • 124. Arenillas JF, Moro MA, Dávalos A. The metabolic syndrome and stroke: potential treatment approaches.Stroke. 2007; 38:2196–2203. doi: 10.1161/STROKEAHA.106.480004.LinkGoogle Scholar
  • 125. Koren-Morag N, Goldbourt U, Tanne D. Relation between the metabolic syndrome and ischemic stroke or transient ischemic attack: a prospective cohort study in patients with atherosclerotic cardiovascular disease.Stroke. 2005; 36:1366–1371. doi: 10.1161/01.STR.0000169945.75911.33.LinkGoogle Scholar
  • 126. Najarian RM, Sullivan LM, Kannel WB, Wilson PW, D’Agostino RB, Wolf PA. Metabolic syndrome compared with type 2 diabetes mellitus as a risk factor for stroke: the Framingham Offspring Study.Arch Intern Med. 2006; 166:106–111. doi: 10.1001/archinte.166.1.106.CrossrefMedlineGoogle Scholar
  • 127. Kuo SH, Lee YT, Li CR, Tseng CJ, Chao WN, Wang PH, Wong RH, Chen CC, Chen SC, Lee MC. Mortality in emergency department sepsis score as a prognostic indicator in patients with pyogenic liver abscess.Am J Emerg Med. 2013; 31:916–921. doi: 10.1016/j.ajem.2013.02.045.CrossrefMedlineGoogle Scholar
  • 128. Gill JS, Zezulka AV, Shipley MJ, Gill SK, Beevers DG. Stroke and alcohol consumption.N Engl J Med. 1986; 315:1041–1046. doi: 10.1056/NEJM198610233151701.CrossrefMedlineGoogle Scholar
  • 129. Hillbom M, Numminen H, Juvela S. Recent heavy drinking of alcohol and embolic stroke.Stroke. 1999; 30:2307–2312.LinkGoogle Scholar
  • 130. Klatsky AL, Armstrong MA, Friedman GD, Sidney S. Alcohol drinking and risk of hospitalization for ischemic stroke.Am J Cardiol. 2001; 88:703–706.CrossrefMedlineGoogle Scholar
  • 131. Mazzaglia G, Britton AR, Altmann DR, Chenet L. Exploring the relationship between alcohol consumption and non-fatal or fatal stroke: a systematic review.Addiction. 2001; 96:1743–1756. doi: 10.1080/09652140120089490.CrossrefMedlineGoogle Scholar
  • 132. Wannamethee SG, Shaper AG. Patterns of alcohol intake and risk of stroke in middle-aged British men.Stroke. 1996; 27:1033–1039.LinkGoogle Scholar
  • 133. Rantakömi SH, Laukkanen JA, Sivenius J, Kauhanen J, Kurl S. Alcohol consumption and the risk of stroke among hypertensive and overweight men.J Neurol. 2013; 260:534–539. doi: 10.1007/s00415-012-6672-6.CrossrefMedlineGoogle Scholar
  • 134. Hillbom M, Saloheimo P, Juvela S. Alcohol consumption, blood pressure, and the risk of stroke.Curr Hypertens Rep. 2011; 13:208–213. doi: 10.1007/s11906-011-0194-y.CrossrefMedlineGoogle Scholar
  • 135. Judd SE, McClure LA, Howard VJ, Lackland DT, Halanych JH, Kabagambe EK. Heavy drinking is associated with poor blood pressure control in the REasons for Geographic and Racial Differences in Stroke (REGARDS) study.Int J Environ Res Public Health. 2011; 8:1601–1612. doi: 10.3390/ijerph8051601.CrossrefMedlineGoogle Scholar
  • 136. Wakabayashi I, Araki Y. Influences of gender and age on relationships between alcohol drinking and atherosclerotic risk factors.Alcohol Clin Exp Res. 2010; 34(suppl 1):S54–S60. doi: 10.1111/j.1530-0277.2008.00758.x.CrossrefMedlineGoogle Scholar
  • 137. Foerster M, Marques-Vidal P, Gmel G, Daeppen JB, Cornuz J, Hayoz D, Pécoud A, Mooser V, Waeber G, Vollenweider P, Paccaud F, Rodondi N. Alcohol drinking and cardiovascular risk in a population with high mean alcohol consumption.Am J Cardiol. 2009; 103:361–368. doi: 10.1016/j.amjcard.2008.09.089.CrossrefMedlineGoogle Scholar
  • 138. Ohira T, Tanigawa T, Tabata M, Imano H, Kitamura A, Kiyama M, Sato S, Okamura T, Cui R, Koike KA, Shimamoto T, Iso H. Effects of habitual alcohol intake on ambulatory blood pressure, heart rate, and its variability among Japanese men.Hypertension. 2009; 53:13–19. doi: 10.1161/HYPERTENSIONAHA.108.114835.LinkGoogle Scholar
  • 139. Taylor B, Irving HM, Baliunas D, Roerecke M, Patra J, Mohapatra S, Rehm J. Alcohol and hypertension: gender differences in dose-response relationships determined through systematic review and meta-analysis.Addiction. 2009; 104:1981–1990. doi: 10.1111/j.1360-0443.2009.02694.x.CrossrefMedlineGoogle Scholar
  • 140. Brust JC. Neurological Aspects of Substance Abuse. Philadelphia, PA: Butterworth-Heinemann; 2004.Google Scholar
  • 141. Esse K, Fossati-Bellani M, Traylor A, Martin-Schild S. Epidemic of illicit drug use, mechanisms of action/addiction and stroke as a health hazard.Brain Behav. 2011; 1:44–54. doi: 10.1002/brb3.7.CrossrefMedlineGoogle Scholar
  • 142. Ho EL, Josephson SA, Lee HS, Smith WS. Cerebrovascular complications of methamphetamine abuse.Neurocrit Care. 2009; 10:295–305. doi: 10.1007/s12028-008-9177-5.CrossrefMedlineGoogle Scholar
  • 143. Bhat VM, Cole JW, Sorkin JD, Wozniak MA, Malarcher AM, Giles WH, Stern BJ, Kittner SJ. Dose-response relationship between cigarette smoking and risk of ischemic stroke in young women.Stroke. 2008; 39:2439–2443. doi: 10.1161/STROKEAHA.107.510073.LinkGoogle Scholar
  • 144. Thun MJ, Apicella LF, Henley SJ. Smoking vs other risk factors as the cause of smoking-attributable deaths: confounding in the courtroom.JAMA. 2000; 284:706–712.CrossrefMedlineGoogle Scholar
  • 145. Burns DM. Epidemiology of smoking-induced cardiovascular disease.Prog Cardiovasc Dis. 2003; 46:11–29.CrossrefMedlineGoogle Scholar
  • 146. Fagerström K. The epidemiology of smoking: health consequences and benefits of cessation.Drugs. 2002; 62(suppl 2):1–9.CrossrefMedlineGoogle Scholar
  • 147. Robbins AS, Manson JE, Lee IM, Satterfield S, Hennekens CH. Cigarette smoking and stroke in a cohort of U.S. male physicians.Ann Intern Med. 1994; 120:458–462.CrossrefMedlineGoogle Scholar
  • 148. Song YM, Cho HJ. Risk of stroke and myocardial infarction after reduction or cessation of cigarette smoking: a cohort study in korean men.Stroke. 2008; 39:2432–2438. doi: 10.1161/STROKEAHA.107.512632.LinkGoogle Scholar
  • 149. Malek AM, Cushman M, Lackland DT, Howard G, McClure LA. Secondhand smoke exposure and stroke: the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study.Am J Prev Med. 2015; 49:e89–e97. doi: 10.1016/j.amepre.2015.04.014.CrossrefMedlineGoogle Scholar
  • 150. Kaptoge S, Di Angelantonio E, Lowe G, Pepys MB, Thompson SG, Collins R, Danesh J; Emerging Risk Factors Collaboration. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis.Lancet. 2010; 375:132–140. doi: 10.1016/S0140-6736(09)61717-7.CrossrefMedlineGoogle Scholar
  • 151. Zhou Y, Han W, Gong D, Man C, Fan Y. Hs-CRP in stroke: a meta-analysis.Clin Chim Acta. 2016; 453:21–27. doi: 10.1016/j.cca.2015.11.027.CrossrefMedlineGoogle Scholar
  • 152. Zacho J, Tybjaerg-Hansen A, Jensen JS, Grande P, Sillesen H, Nordestgaard BG. Genetically elevated C-reactive protein and ischemic vascular disease.N Engl J Med. 2008; 359:1897–1908. doi: 10.1056/NEJMoa0707402.CrossrefMedlineGoogle Scholar
  • 153. Eisenhardt SU, Habersberger J, Murphy A, Chen YC, Woollard KJ, Bassler N, Qian H, von Zur Muhlen C, Hagemeyer CE, Ahrens I, Chin-Dusting J, Bobik A, Peter K. Dissociation of pentameric to monomeric C-reactive protein on activated platelets localizes inflammation to atherosclerotic plaques.Circ Res. 2009; 105:128–137. doi: 10.1161/CIRCRESAHA.108.190611.LinkGoogle Scholar
  • 154. Thompson D, Pepys MB, Wood SP. The physiological structure of human C-reactive protein and its complex with phosphocholine.Structure. 1999; 7:169–177. doi: 10.1016/S0969-2126(99)80023-9.CrossrefMedlineGoogle Scholar
  • 155. Fujita Y, Yamaguchi S, Kakino A, Iwamoto S, Yoshimoto R, Sawamura T. Lectin-like oxidized LDL receptor 1 is involved in CRP-mediated complement activation.Clin Chem. 2011; 57:1398–1405. doi: 10.1373/clinchem.2011.168625.CrossrefMedlineGoogle Scholar
  • 156. Libby P. Inflammation in atherosclerosis.Arterioscler Thromb Vasc Biol. 2012; 32:2045–2051. doi: 10.1161/ATVBAHA.108.179705.LinkGoogle Scholar
  • 157. Elkind MS, Ramakrishnan P, Moon YP, Boden-Albala B, Liu KM, Spitalnik SL, Rundek T, Sacco RL, Paik MC. Infectious burden and risk of stroke: the northern Manhattan study.Arch Neurol. 2010; 67:33–38. doi: 10.1001/archneurol.2009.271.CrossrefMedlineGoogle Scholar
  • 158. Elkind MS, Luna JM, Moon YP, Boden-Albala B, Liu KM, Spitalnik S, Rundek T, Sacco RL, Paik MC. Infectious burden and carotid plaque thickness: the northern Manhattan study.Stroke. 2010; 41:e117–e122. doi: 10.1161/STROKEAHA.109.571299.LinkGoogle Scholar
  • 159. Wright CB, Gardener H, Dong C, Yoshita M, DeCarli C, Sacco RL, Stern Y, Elkind MS. Infectious burden and cognitive decline in the Northern Manhattan Study.J Am Geriatr Soc. 2015; 63:1540–1545. doi: 10.1111/jgs.13557.CrossrefMedlineGoogle Scholar
  • 160. Katan M, Moon YP, Paik MC, Sacco RL, Wright CB, Elkind MS. Infectious burden and cognitive function: the Northern Manhattan Study.Neurology. 2013; 80:1209–1215. doi: 10.1212/WNL.0b013e3182896e79.CrossrefMedlineGoogle Scholar
  • 161. Ovbiagele B, Nath A. Increasing incidence of ischemic stroke in patients with HIV infection.Neurology. 2011; 76:444–450. doi: 10.1212/WNL.0b013e31820a0cfc.CrossrefMedlineGoogle Scholar
  • 162. Chow FC, He W, Bacchetti P, Regan S, Feske SK, Meigs JB, Grinspoon SK, Triant VA. Elevated rates of intracerebral hemorrhage in individuals from a US clinical care HIV cohort.Neurology. 2014; 83:1705–1711. doi: 10.1212/WNL.0000000000000958.CrossrefMedlineGoogle Scholar
  • 163. Gutierrez J, Goldman J, Dwork AJ, Elkind MS, Marshall RS, Morgello S. Brain arterial remodeling contribution to nonembolic brain infarcts in patients with HIV.Neurology. 2015; 85:1139–1145. doi: 10.1212/WNL.0000000000001976.CrossrefMedlineGoogle Scholar
  • 164. Sabin CA, Ryom L, De Wit S, Mocroft A, Phillips AN, Worm SW, Weber R, D’Arminio Monforte A, Reiss P, Kamara D, El-Sadr W, Pradier C, Dabis F, Law M, Lundgren J; D:A:D Study Group. Associations between immune depression and cardiovascular events in HIV infection.AIDS. 2013; 27:2735–2748. doi: 10.1097/01.aids.0000432457.91228.f3.CrossrefMedlineGoogle Scholar
  • 165. Gutierrez J, Elkind MS, Marshall RS. Cardiovascular profile and events of US adults 20-49 years with HIV: results from the NHANES 1999-2008.AIDS Care. 2013; 25:1385–1391. doi: 10.1080/09540121.2013.769493.CrossrefMedlineGoogle Scholar
  • 166. Elkind MS, Carty CL, O’Meara ES, Lumley T, Lefkowitz D, Kronmal RA, Longstreth WT. Hospitalization for infection and risk of acute ischemic stroke: the Cardiovascular Health Study.Stroke. 2011; 42:1851–1856. doi: 10.1161/STROKEAHA.110.608588.LinkGoogle Scholar
  • 167. Clar C, Oseni Z, Flowers N, Keshtkar-Jahromi M, Rees K. Influenza vaccines for preventing cardiovascular disease.Cochrane Database Syst Rev. 2015; 5:CD005050.Google Scholar
  • 168. Smeeth L, Thomas SL, Hall AJ, Hubbard R, Farrington P, Vallance P. Risk of myocardial infarction and stroke after acute infection or vaccination.N Engl J Med. 2004; 351:2611–2618. doi: 10.1056/NEJMoa041747.CrossrefMedlineGoogle Scholar
  • 169. Walkey AJ, Hammill BG, Curtis LH, Benjamin EJ. Long-term outcomes following development of new-onset atrial fibrillation during sepsis.Chest. 2014; 146:1187–1195. doi: 10.1378/chest.14-0003.CrossrefMedlineGoogle Scholar
  • 170. Corrales-Medina VF, Alvarez KN, Weissfeld LA, Angus DC, Chirinos JA, Chang CC, Newman A, Loehr L, Folsom AR, Elkind MS, Lyles MF, Kronmal RA, Yende S. Association between hospitalization for pneumonia and subsequent risk of cardiovascular disease.JAMA. 2015; 313:264–274. doi: 10.1001/jama.2014.18229.CrossrefMedlineGoogle Scholar
  • 171. Corrales-Medina VF, Taljaard M, Yende S, Kronmal R, Dwivedi G, Newman AB, Elkind MS, Lyles MF, Chirinos JA. Intermediate and long-term risk of new-onset heart failure after hospitalization for pneumonia in elderly adults.Am Heart J. 2015; 170:306–312. doi: 10.1016/j.ahj.2015.04.028.CrossrefMedlineGoogle Scholar
  • 172. Dalager-Pedersen M, Søgaard M, Schønheyder HC, Nielsen H, Thomsen RW. Risk for myocardial infarction and stroke after community-acquired bacteremia: a 20-year population-based cohort study.Circulation. 2014; 129:1387–1396. doi: 10.1161/CIRCULATIONAHA.113.006699.LinkGoogle Scholar
  • 173. Clayton TC, Thompson M, Meade TW. Recent respiratory infection and risk of cardiovascular disease: case-control study through a general practice database.Eur Heart J. 2008; 29:96–103. doi: 10.1093/eurheartj/ehm516.CrossrefMedlineGoogle Scholar
  • 174. Tonne C, Halonen JI, Beevers SD, Dajnak D, Gulliver J, Kelly FJ, Wilkinson P, Anderson HR. Long-term traffic air and noise pollution in relation to mortality and hospital readmission among myocardial infarction survivors.Int J Hyg Environ Health. 2016; 219:72–78. doi: 10.1016/j.ijheh.2015.09.003.CrossrefMedlineGoogle Scholar
  • 175. Mostofsky E, Schwartz J, Coull BA, Koutrakis P, Wellenius GA, Suh HH, Gold DR, Mittleman MA. Modeling the association between particle constituents of air pollution and health outcomes.Am J Epidemiol. 2012; 176:317–326. doi: 10.1093/aje/kws018.CrossrefMedlineGoogle Scholar
  • 176. O’Donnell MJ, Fang J, Mittleman MA, Kapral MK, Wellenius GA; Investigators of the Registry of Canadian Stroke Network. Fine particulate air pollution (PM2.5) and the risk of acute ischemic stroke.Epidemiology. 2011; 22:422–431. doi: 10.1097/EDE.0b013e3182126580.CrossrefMedlineGoogle Scholar
  • 177. Suissa L, Fortier M, Lachaud S, Staccini P, Mahagne MH. Ozone air pollution and ischaemic stroke occurrence: a case-crossover study in Nice, France.BMJ Open. 2013; 3:e004060. doi: 10.1136/bmjopen-2013-004060.CrossrefMedlineGoogle Scholar
  • 178. Wellenius GA, Schwartz J, Mittleman MA. Air pollution and hospital admissions for ischemic and hemorrhagic stroke among medicare beneficiaries.Stroke. 2005; 36:2549–2553. doi: 10.1161/01.STR.0000189687.78760.47.LinkGoogle Scholar
  • 179. Johnson JY, Rowe BH, Villeneuve PJ. Ecological analysis of long-term exposure to ambient air pollution and the incidence of stroke in Edmonton, Alberta, Canada.Stroke. 2010; 41:1319–1325. doi: 10.1161/STROKEAHA.110.580571.LinkGoogle Scholar
  • 180. Chen R, Zhang Y, Yang C, Zhao Z, Xu X, Kan H. Acute effect of ambient air pollution on stroke mortality in the China air pollution and health effects study.Stroke. 2013; 44:954–960. doi: 10.1161/STROKEAHA.111.673442.LinkGoogle Scholar
  • 181. Sørensen M, Lühdorf P, Ketzel M, Andersen ZJ, Tjønneland A, Overvad K, Raaschou-Nielsen O. Combined effects of road traffic noise and ambient air pollution in relation to risk for stroke?Environ Res. 2014; 133:49–55. doi: 10.1016/j.envres.2014.05.011.CrossrefMedlineGoogle Scholar
  • 182. Maheswaran R, Pearson T, Smeeton NC, Beevers SD, Campbell MJ, Wolfe CD. Outdoor air pollution and incidence of ischemic and hemorrhagic stroke: a small-area level ecological study.Stroke. 2012; 43:22–27. doi: 10.1161/STROKEAHA.110.610238.LinkGoogle Scholar
  • 183. Wing JJ, Adar SD, Sánchez BN, Morgenstern LB, Smith MA, Lisabeth LD. Ethnic differences in ambient air pollution and risk of acute ischemic stroke.Environ Res. 2015; 143:62–67. doi: 10.1016/j.envres.2015.09.031.CrossrefMedlineGoogle Scholar
  • 184. Scheers H, Jacobs L, Casas L, Nemery B, Nawrot TS. Long- term exposure to particulate matter air pollution is a risk factor for stroke: meta- analytical evidence.Stroke. 2015; 46:3058–3066. doi: 10.1161/STROKEAHA.115.009913.LinkGoogle Scholar
  • 185. Matarin M, Brown WM, Singleton A, Hardy JA, Meschia JF; ISGS investigators. Whole genome analyses suggest ischemic stroke and heart disease share an association with polymorphisms on chromosome 9p21.Stroke. 2008; 39:1586–1589. doi: 10.1161/STROKEAHA.107.502963.LinkGoogle Scholar
  • 186. Gretarsdottir S, Thorleifsson G, Manolescu A, et al.. Risk variants for atrial fibrillation on chromosome 4q25 associate with ischemic stroke.Ann Neurol. 2008; 64:402–409. doi: 10.1002/ana.21480.CrossrefMedlineGoogle Scholar
  • 187. Bevan S, Traylor M, Adib-Samii P, Malik R, Paul NL, Jackson C, Farrall M, Rothwell PM, Sudlow C, Dichgans M, Markus HS. Genetic heritability of ischemic stroke and the contribution of previously reported candidate gene and genomewide associations.Stroke. 2012; 43:3161–3167. doi: 10.1161/STROKEAHA.112.665760.LinkGoogle Scholar
  • 188. Flossmann E, Schulz UG, Rothwell PM. Systematic review of methods and results of studies of the genetic epidemiology of ischemic stroke.Stroke. 2004; 35:212–227. doi: 10.1161/01.STR.0000107187.84390.AA.LinkGoogle Scholar
  • 189. Carmelli D, DeCarli C, Swan GE, Jack LM, Reed T, Wolf PA, Miller BL. Evidence for genetic variance in white matter hyperintensity volume in normal elderly male twins.Stroke. 1998; 29:1177–1181.LinkGoogle Scholar
  • 190. Tournier-Lasserve E, Iba-Zizen MT, Romero N, Bousser MG. Autosomal dominant syndrome with strokelike episodes and leukoencephalopathy.Stroke. 1991; 22:1297–1302.LinkGoogle Scholar
  • 191. Peters N, Opherk C, Bergmann T, Castro M, Herzog J, Dichgans M. Spectrum of mutations in biopsy-proven CADASIL: implications for diagnostic strategies.Arch Neurol. 2005; 62:1091–1094. doi: 10.1001/archneur.62.7.1091.CrossrefMedlineGoogle Scholar
  • 192. Joutel A, Andreux F, Gaulis S, Domenga V, Cecillon M, Battail N, Piga N, Chapon F, Godfrain C, Tournier-Lasserve E. The ectodomain of the Notch3 receptor accumulates within the cerebrovasculature of CADASIL patients.J Clin Invest. 2000; 105:597–605. doi: 10.1172/JCI8047.CrossrefMedlineGoogle Scholar
  • 193. Ebke M, Dichgans M, Bergmann M, Voelter HU, Rieger P, Gasser T, Schwendemann G. CADASIL: skin biopsy allows diagnosis in early stages.Acta Neurol Scand. 1997; 95:351–357.CrossrefMedlineGoogle Scholar
  • 194. Menezes Cordeiro I, Nzwalo H, Sá F, Ferreira RB, Alonso I, Afonso L, Basílio C. Shifting the CARASIL paradigm: report of a non-Asian family and literature review.Stroke. 2015; 46:1110–1112. doi: 10.1161/STROKEAHA.114.006735.LinkGoogle Scholar
  • 195. Hara K, Shiga A, Fukutake T, et al.. Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease.N Engl J Med. 2009; 360:1729–1739. doi: 10.1056/NEJMoa0801560.CrossrefMedlineGoogle Scholar
  • 196. Annes JP, Munger JS, Rifkin DB. Making sense of latent TGFbeta activation.J Cell Sci. 2003; 116:217–224.CrossrefMedlineGoogle Scholar
  • 197. Coucke PJ, Willaert A, Wessels MW, et al.. Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome.Nat Genet. 2006; 38:452–457. doi: 10.1038/ng1764.CrossrefMedlineGoogle Scholar
  • 198. Levy E, Jaskolski M, Grubb A. The role of cystatin C in cerebral amyloid angiopathy and stroke: cell biology and animal models.Brain Pathol. 2006; 16:60–70.CrossrefMedlineGoogle Scholar
  • 199. Ohene-Frempong K, Weiner SJ, Sleeper LA, Miller ST, Embury S, Moohr JW, Wethers DL, Pegelow CH, Gill FM. Cerebrovascular accidents in sickle cell disease: rates and risk factors.Blood. 1998; 91:288–294.MedlineGoogle Scholar
  • 200. Russell MO, Goldberg HI, Hodson A, Kim HC, Halus J, Reivich M, Schwartz E. Effect of transfusion therapy on arteriographic abnormalities and on recurrence of stroke in sickle cell disease.Blood. 1984; 63:162–169.CrossrefMedlineGoogle Scholar
  • 201. Schatz J, Brown RT, Pascual JM, Hsu L, DeBaun MR. Poor school and cognitive functioning with silent cerebral infarcts and sickle cell disease.Neurology. 2001; 56:1109–1111.CrossrefMedlineGoogle Scholar
  • 202. Dichgans M. Genetics of ischaemic stroke.Lancet Neurol. 2007; 6:149–161. doi: 10.1016/S1474-4422(07)70028-5.CrossrefMedlineGoogle Scholar
  • 203. Mehta A, Ginsberg L; FOS Investigators. Natural history of the cerebrovascular complications of Fabry disease.Acta Paediatr Suppl. 2005; 94:24–27; discussion 29.CrossrefMedlineGoogle Scholar
  • 204. Martínez-Fernández E, Gil-Peralta A, García-Lozano R, Chinchón I, Aguilera I, Fernández-López O, Arenas J, Campos Y, Bautista J. Mitochondrial disease and stroke.Stroke. 2001; 32:2507–2510.LinkGoogle Scholar
  • 205. Gould DB, Phalan FC, van Mil SE, Sundberg JP, Vahedi K, Massin P, Bousser MG, Heutink P, Miner JH, Tournier-Lasserve E, John SW. Role of COL4A1 in small-vessel disease and hemorrhagic stroke.N Engl J Med. 2006; 354:1489–1496. doi: 10.1056/NEJMoa053727.CrossrefMedlineGoogle Scholar
  • 206. Lanfranconi S, Markus HS. COL4A1 mutations as a monogenic cause of cerebral small vessel disease: a systematic review.Stroke. 2010; 41:e513–e518. doi: 10.1161/STROKEAHA.110.581918.LinkGoogle Scholar
  • 207. Milewicz DM, Østergaard JR, Ala-Kokko LM, Khan N, Grange DK, Mendoza-Londono R, Bradley TJ, Olney AH, Adès L, Maher JF, Guo D, Buja LM, Kim D, Hyland JC, Regalado ES. De novo ACTA2 mutation causes a novel syndrome of multisystemic smooth muscle dysfunction.Am J Med Genet A. 2010; 152A:2437–2443. doi: 10.1002/ajmg.a.33657.CrossrefMedlineGoogle Scholar
  • 208. Disabella E, Grasso M, Gambarin FI, Narula N, Dore R, Favalli V, Serio A, Antoniazzi E, Mosconi M, Pasotti M, Odero A, Arbustini E. Risk of dissection in thoracic aneurysms associated with mutations of smooth muscle alpha-actin 2 (ACTA2).Heart. 2011; 97:321–326. doi: 10.1136/hrt.2010.204388.CrossrefMedlineGoogle Scholar
  • 209. Munot P, Saunders DE, Milewicz DM, Regalado ES, Ostergaard JR, Braun KP, Kerr T, Lichtenbelt KD, Philip S, Rittey C, Jacques TS, Cox TC, Ganesan V. A novel distinctive cerebrovascular phenotype is associated with heterozygous Arg179 ACTA2 mutations.Brain. 2012; 135:2506–2514. doi: 10.1093/brain/aws172.CrossrefMedlineGoogle Scholar
  • 210. Williams FM, Carter AM, Hysi PG, et al.; EuroCLOT Investigators; Wellcome Trust Case Control Consortium 2; MOnica Risk, Genetics, Archiving and Monograph; MetaStroke; International Stroke Genetics Consortium. Ischemic stroke is associated with the ABO locus: the EuroCLOT study.Ann Neurol. 2013; 73:16–31. doi: 10.1002/ana.23838.CrossrefMedlineGoogle Scholar
  • 211. Network NSG, International Stroke Genetics C. Loci associated with ischaemic stroke and its subtypes (sign): a genome-wide association study [published online ahead of print December 18, 2015].Lancet Neurol. doi: 10.1016/S1474-4422(15)00338-5.Google Scholar
  • 212. Neurology Working Group of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium; Stroke Genetics Network (SiGN); International Stroke Genetics Consortium (ISGC). Identification of additional risk loci for stroke and small vessel disease: a meta-analysis of genome-wide association studies.Lancet Neurol. 2016; 15:695–707. doi: 10.1016/S1474-4422(16)00102-2.CrossrefMedlineGoogle Scholar
  • 213. French CR, Seshadri S, Destefano AL, et al.. Mutation of FOXC1 and PITX2 induces cerebral small-vessel disease.J Clin Invest. 2014; 124:4877–4881. doi: 10.1172/JCI75109.CrossrefMedlineGoogle Scholar
  • 214. Malik R, Traylor M, Pulit SL, et al.; ISGC Analysis Group; METASTROKE collaboration; Wellcome Trust Case Control Consortium 2 (WTCCC2); NINDS Stroke Genetics Network (SiGN). Low-frequency and common genetic variation in ischemic stroke: The METASTROKE collaboration.Neurology. 2016; 86:1217–1226. doi: 10.1212/WNL.0000000000002528.CrossrefMedlineGoogle Scholar
  • 215. Erdmann J, Stark K, Esslinger UB, et al.; CARDIoGRAM. Dysfunctional nitric oxide signalling increases risk of myocardial infarction.Nature. 2013; 504:432–436. doi: 10.1038/nature12722.CrossrefMedlineGoogle Scholar
  • 216. Schunkert H, Götz A, Braund P, et al.; Cardiogenics Consortium. Repeated replication and a prospective meta-analysis of the association between chromosome 9p21.3 and coronary artery disease.Circulation. 2008; 117:1675–1684. doi: 10.1161/CIRCULATIONAHA.107.730614.LinkGoogle Scholar
  • 217. Gschwendtner A, Bevan S, Cole JW, et al.; International Stroke Genetics Consortium. Sequence variants on chromosome 9p21.3 confer risk for atherosclerotic stroke.Ann Neurol. 2009; 65:531–539. doi: 10.1002/ana.21590.CrossrefMedlineGoogle Scholar
  • 218. Weintraub WS, Daniels SR, Burke LE, Franklin BA, Goff DC, Hayman LL, Lloyd-Jones D, Pandey DK, Sanchez EJ, Schram AP, Whitsel LP; American Heart Association Advocacy Coordinating Committee; Council on Cardiovascular Disease in the Young; Council on the Kidney in Cardiovascular Disease; Council on Epidemiology and Prevention; Council on Cardiovascular Nursing; Council on Arteriosclerosis; Thrombosis and Vascular Biology; Council on Clinical Cardiology, and Stroke Council. Value of primordial and primary prevention for cardiovascular disease: a policy statement from the American Heart Association.Circulation. 2011; 124:967–990. doi: 10.1161/CIR.0b013e3182285a81.LinkGoogle Scholar
  • 219. Kernan WN, Ovbiagele B, Black HR, et al.; American Heart Association Stroke Council, Council on Cardiovascular and Stroke Nursing, Council on Clinical Cardiology, and Council on Peripheral Vascular Disease. Guidelines for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline for healthcare professionals from the American Heart Association/American Stroke Association.Stroke. 2014; 45:2160–2236. doi: 10.1161/STR.0000000000000024.LinkGoogle Scholar
  • 220. Howard VJ, McDonnell MN. Physical activity in primary stroke prevention: just do it!Stroke. 2015; 46:1735–1739. doi: 10.1161/STROKEAHA.115.006317.LinkGoogle Scholar
  • 221. Marcus BH, Williams DM, Dubbert PM, Sallis JF, King AC, Yancey AK, Franklin BA, Buchner D, Daniels SR, Claytor RP; American Heart Association Council on Nutrition, Physical Activity, and Metabolism (Subcommittee on Physical Activity); American Heart Association Council on Cardiovascular Disease in the Young; Interdisciplinary Working Group on Quality of Care and Outcomes Research. Physical activity intervention studies: what we know and what we need to know: a scientific statement from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism (Subcommittee on Physical Activity); Council on Cardiovascular Disease in the Young; and the Interdisciplinary Working Group on Quality of Care and Outcomes Research.Circulation. 2006; 114:2739–2752. doi: 10.1161/CIRCULATIONAHA.106.179683.LinkGoogle Scholar
  • 222. Kyu HH, Bachman VF, Alexander LT, Mumford JE, Afshin A, Estep K, Veerman JL, Delwiche K, Iannarone ML, Moyer ML, Cercy K, Vos T, Murray CJ, Forouzanfar MH. Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013.BMJ. 2016; 354:i3857.CrossrefMedlineGoogle Scholar
  • 223. Yusuf S, Pais P, Afzal R, Xavier D, Teo K, Eikelboom J, Sigamani A, Mohan V, Gupta R, Thomas N; Indian Polycap Study (TIPS). Effects of a polypill (Polycap) on risk factors in middle-aged individuals without cardiovascular disease (TIPS): a phase II, double-blind, randomised trial.Lancet. 2009; 373:1341–1351. doi: 10.1016/S0140-6736(09)60611-5.CrossrefMedlineGoogle Scholar
  • 224. Yusuf S, Islam S, Chow CK, et al.; Prospective Urban Rural Epidemiology (PURE) Study Investigators. Use of secondary prevention drugs for cardiovascular disease in the community in high-income, middle-income, and low-income countries (the PURE Study): a prospective epidemiological survey.Lancet. 2011; 378:1231–1243. doi: 10.1016/S0140-6736(11)61215-4.CrossrefMedlineGoogle Scholar
  • 225. Law MR, Wald NJ. Risk factor thresholds: their existence under scrutiny.BMJ. 2002; 324:1570–1576.CrossrefMedlineGoogle Scholar
  • 226. Yusuf S, Bosch J, Dagenais G, et al.; HOPE-3 Investigators. Cholesterol lowering in intermediate- risk persons without cardiovascular disease.N Engl J Med. 2016; 374:2021–2031. doi: 10.1056/NEJMoa1600176.CrossrefMedlineGoogle Scholar
  • 227. Cushman WC, Goff DC. More HOPE for prevention with statins.N Engl J Med. 2016; 374:2085–2087. doi: 10.1056/NEJMe1603504.CrossrefMedlineGoogle Scholar
  • 228. Yusuf S, Lonn E, Pais P, et al.; HOPE-3 Investigators. Blood- pressure and cholesterol lowering in persons without cardiovascular disease.N Engl J Med. 2016; 374:2032–2043. doi: 10.1056/NEJMoa1600177.CrossrefMedlineGoogle Scholar
  • 229. Lonn EM, Bosch J, López-Jaramillo P, et al.; HOPE-3 Investigators. Blood-Pressure lowering in intermediate- risk persons without cardiovascular disease.N Engl J Med. 2016; 374:2009–2020. doi: 10.1056/NEJMoa1600175.CrossrefMedlineGoogle Scholar
  • 230. Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR, Tudor-Locke C, Greer JL, Vezina J, Whitt-Glover MC, Leon AS. 2011 compendium of physical activities: a second update of codes and MET values.Med Sci Sports Exerc. 2011; 43:1575–1581. doi: 10.1249/MSS.0b013e31821ece12.CrossrefMedlineGoogle Scholar
  • 231. Lee CD, Folsom AR, Blair SN. Physical activity and stroke risk: a meta-analysis.Stroke. 2003; 34:2475–2481. doi: 10.1161/01.STR.0000091843.02517.9D.LinkGoogle Scholar
  • 232. PhysicalActivityGuidelinesAdvisoryCommitteeReport, 2008. To the secretary of health and human services. Part a: executive summary.Nutr Rev. 2009; 67:114–120.CrossrefMedlineGoogle Scholar
  • 233. Willey JZ, Moon YP, Paik MC, Boden-Albala B, Sacco RL, Elkind MS. Physical activity and risk of ischemic stroke in the Northern Manhattan Study.Neurology. 2009; 73:1774–1779. doi: 10.1212/WNL.0b013e3181c34b58.CrossrefMedlineGoogle Scholar
  • 234. Eckel RH, Jakicic JM, Ard JD, et al.; American College of Cardiology/American Heart Association Task Force on Practice Guidelines. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines.Circulation. 2014; 129:S76–S99. doi: 10.1161/01.cir.0000437740.48606.d1.LinkGoogle Scholar
  • 235. Rees K, Dyakova M, Wilson N, Ward K, Thorogood M, Brunner E. Dietary advice for reducing cardiovascular risk.Cochrane Database Syst Rev. 2013:CD002128.CrossrefGoogle Scholar
  • 236. Boden-Albala B, Southwick L, Carman H. Dietary interventions to lower the risk of stroke.Curr Neurol Neurosci Rep. 2015; 15:15. doi: 10.1007/s11910-015-0538-0.CrossrefMedlineGoogle Scholar
  • 237. Fung TT, Stampfer MJ, Manson JE, Rexrode KM, Willett WC, Hu FB. Prospective study of major dietary patterns and stroke risk in women.Stroke. 2004; 35:2014–2019. doi: 10.1161/01.STR.0000135762.89154.92.LinkGoogle Scholar
  • 238. Lakkur S, Judd SE. Diet and stroke: recent evidence supporting a Mediterranean- style diet and food in the primary prevention of stroke.Stroke. 2015; 46:2007–2011. doi: 10.1161/STROKEAHA.114.006306.LinkGoogle Scholar
  • 239. Willett WC, Sacks F, Trichopoulou A, Drescher G, Ferro-Luzzi A, Helsing E, Trichopoulos D. Mediterranean diet pyramid: a cultural model for healthy eating.Am J Clin Nutr. 1995; 61:1402S–1406S.CrossrefMedlineGoogle Scholar
  • 240. Salehi-Abargouei A, Maghsoudi Z, Shirani F, Azadbakht L. Effects of dietary approaches to stop hypertension (DASH)-style diet on fatal or nonfatal cardiovascular diseases–incidence: a systematic review and meta-analysis on observational prospective studies.Nutrition. 2013; 29:611–618. doi: 10.1016/j.nut.2012.12.018.CrossrefMedlineGoogle Scholar
  • 241. Wolf PA, D’Agostino RB, Kannel WB, Bonita R, Belanger AJ. Cigarette smoking as a risk factor for stroke. The Framingham Study.JAMA. 1988; 259:1025–1029.CrossrefMedlineGoogle Scholar
  • 242. Phs Guideline Update Panel Liaisons, and Staff. Treating tobacco use and dependence: 2008 update U.S. Public health service clinical practice guideline executive summary.Respir Care. 2008; 53:1217–1222.MedlineGoogle Scholar
  • 243. Chelladurai Y, Singh S. Varenicline and cardiovascular adverse events: a perspective review.Ther Adv Drug Saf. 2014; 5:167–172. doi: 10.1177/2042098614530421.CrossrefMedlineGoogle Scholar
  • 244. Law MR, Morris JK, Wald NJ. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies.BMJ. 2009; 338:b1665.CrossrefMedlineGoogle Scholar
  • 245. Chen GJ, Yang MS. The effects of calcium channel blockers in the prevention of stroke in adults with hypertension: a meta-analysis of data from 273,543 participants in 31 randomized controlled trials.PLoS One. 2013; 8:e57854. doi: 10.1371/journal.pone.0057854.CrossrefMedlineGoogle Scholar
  • 246. Meschia JF, Bushnell C, Boden-Albala B, et al.; American Heart Association Stroke Council; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology; Council on Functional Genomics and Translational Biology; Council on Hypertension. Guidelines for the primary prevention of stroke: a statement for healthcare professionals from the American Heart Association/American Stroke Association.Stroke. 2014; 45:3754–3832. doi: 10.1161/STR.0000000000000046.LinkGoogle Scholar
  • 247. James PA, Oparil S, Carter BL, et al.. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8).JAMA. 2014; 311:507–520. doi: 10.1001/jama.2013.284427.CrossrefMedlineGoogle Scholar
  • 248. Wright JT, Williamson JD, Whelton PK, et al.; SPRINT Research Group. A randomized trial of intensive versus standard blood- pressure control.N Engl J Med. 2015; 373:2103–2116. doi: 10.1056/NEJMoa1511939.CrossrefMedlineGoogle Scholar
  • 249. Kernan WN, Viscoli CM, Furie KL, et al.; IRIS Trial Investigators. Pioglitazone after ischemic stroke or transient ischemic attack.N Engl J Med. 2016; 374:1321–1331. doi: 10.1056/NEJMoa1506930.CrossrefMedlineGoogle Scholar
  • 250. Professional practice committee for the standards of medical care in diabetes-2016.Diabetes Care. 2016; 39(suppl 1):S107–108. doi: 10.2337/dc16-S018.CrossrefMedlineGoogle Scholar
  • 251. Hostalek U, Gwilt M, Hildemann S. Therapeutic use of metformin in prediabetes and diabetes prevention.Drugs. 2015; 75:1071–1094. doi: 10.1007/s40265-015-0416-8.CrossrefMedlineGoogle Scholar
  • 252. Heart Protection Study Collaborative Group. Mrc/bhf heart protection study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial.Lancet. 2002; 360:7–22.CrossrefMedlineGoogle Scholar
  • 253. Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, Bhala N, Peto R, Barnes EH, Keech A, Simes J, Collins R; Cholesterol Treatment Trialists’ (CTT) Collaboration. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials.Lancet. 2010; 376:1670–1681. doi: 10.1016/S0140-6736(10)61350-5.CrossrefMedlineGoogle Scholar
  • 254. Amarenco P, Labreuche J. Lipid management in the prevention of stroke: review and updated meta-analysis of statins for stroke prevention.Lancet Neurol. 2009; 8:453–463. doi: 10.1016/S1474-4422(09)70058-4.CrossrefMedlineGoogle Scholar
  • 255. Amarenco P, Bogousslavsky J, Callahan A, Goldstein LB, Hennerici M, Rudolph AE, Sillesen H, Simunovic L, Szarek M, Welch KM, Zivin JA; Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) Investigators. High-dose atorvastatin after stroke or transient ischemic attack.N Engl J Med. 2006; 355:549–559. doi: 10.1056/NEJMoa061894.CrossrefMedlineGoogle Scholar
  • 256. Amarenco P, Benavente O, Goldstein LB, Callahan A, Sillesen H, Hennerici MG, Gilbert S, Rudolph AE, Simunovic L, Zivin JA, Welch KM; Stroke Prevention by Aggressive Reduction in Cholesterol Levels Investigators. Results of the Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) trial by stroke subtypes.Stroke. 2009; 40:1405–1409. doi: 10.1161/STROKEAHA.108.534107.LinkGoogle Scholar
  • 257. Elkind MS, Sacco RL, MacArthur RB, Fink DJ, Peerschke E, Andrews H, Neils G, Stillman J, Corporan T, Leifer D, Cheung K. The Neuroprotection with Statin Therapy for Acute Recovery Trial (NeuSTART): an adaptive design phase I dose-escalation study of high-dose lovastatin in acute ischemic stroke.Int J Stroke. 2008; 3:210–218. doi: 10.1111/j.1747-4949.2008.00200.x.CrossrefMedlineGoogle Scholar
  • 258. Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM, Kastelein JJ, Koenig W, Libby P, Lorenzatti AJ, MacFadyen JG, Nordestgaard BG, Shepherd J, Willerson JT, Glynn RJ; JUPITER Study Group. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein.N Engl J Med. 2008; 359:2195–2207. doi: 10.1056/NEJMoa0807646.CrossrefMedlineGoogle Scholar
  • 259. Baigent C, Blackwell L, Collins R, Emberson J, Godwin J, Peto R, Buring J, Hennekens C, Kearney P, Meade T, Patrono C, Roncaglioni MC, Zanchetti A; Antithrombotic Trialists’ (ATT) Collaboration. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials.Lancet. 2009; 373:1849–1860. doi: 10.1016/S0140-6736(09)60503-1.CrossrefMedlineGoogle Scholar
  • 260. Guirguis-Blake JM, Evans CV, Senger CA, et al.. Aspirin for the primary prevention of cardiovascular events: a systematic evidence review for the U.S. preventive services task force [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US); 2015 Sep. (Evidence Syntheses, No. 131.). https://www.ncbi.nlm.nih.gov/books/NBK321623/.Google Scholar
  • 261. Bhatt DL, Fox KA, Hacke W, et al.; CHARISMA Investigators. Clopidogrel and aspirin versus aspirin alone for the prevention of atherothrombotic events.N Engl J Med. 2006; 354:1706–1717. doi: 10.1056/NEJMoa060989.CrossrefMedlineGoogle Scholar
  • 262. Petersen P, Boysen G, Godtfredsen J, Andersen ED, Andersen B. Placebo-controlled, randomised trial of warfarin and aspirin for prevention of thromboembolic complications in chronic atrial fibrillation. The copenhagen afasak study.Lancet. 1989; 1:175–179.CrossrefMedlineGoogle Scholar
  • 263. Stroke Prevention in Atrial Fibrillation Study. Final results.Circulation. 1991; 84:527–539.MedlineGoogle Scholar
  • 264. Connolly SJ, Ezekowitz MD, Yusuf S, et al.; RE-LY Steering Committee and Investigators. Dabigatran versus warfarin in patients with atrial fibrillation.N Engl J Med. 2009; 361:1139–1151. doi: 10.1056/NEJMoa0905561.CrossrefMedlineGoogle Scholar
  • 265. Patel MR, Mahaffey KW, Garg J, et al.; ROCKET AF Investigators. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation.N Engl J Med. 2011; 365:883–891. doi: 10.1056/NEJMoa1009638.CrossrefMedlineGoogle Scholar
  • 266. Giugliano RP, Ruff CT, Braunwald E, et al.; ENGAGE AF-TIMI 48 Investigators. Edoxaban versus warfarin in patients with atrial fibrillation.N Engl J Med. 2013; 369:2093–2104. doi: 10.1056/NEJMoa1310907.CrossrefMedlineGoogle Scholar
  • 267. Granger CB, Alexander JH, McMurray JJ, et al.; ARISTOTLE Committees and Investigators. Apixaban versus warfarin in patients with atrial fibrillation.N Engl J Med. 2011; 365:981–992. doi: 10.1056/NEJMoa1107039.CrossrefMedlineGoogle Scholar
  • 268. Chai-Adisaksopha C, Crowther M, Isayama T, Lim W. The impact of bleeding complications in patients receiving target-specific oral anticoagulants: a systematic review and meta-analysis.Blood. 2014; 124:2450–2458. doi: 10.1182/blood-2014-07-590323.CrossrefMedlineGoogle Scholar
  • 269. Gage BF, Waterman AD, Shannon W, Boechler M, Rich MW, Radford MJ. Validation of clinical classification schemes for predicting stroke: results from the National Registry of Atrial Fibrillation.JAMA. 2001; 285:2864–2870.CrossrefMedlineGoogle Scholar
  • 270. Lip GY, Nieuwlaat R, Pisters R, Lane DA, Crijns HJ. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation.Chest. 2010; 137:263–272. doi: 10.1378/chest.09-1584.CrossrefMedlineGoogle Scholar
  • 271. Blackshear JL, Odell JA. Appendage obliteration to reduce stroke in cardiac surgical patients with atrial fibrillation.Ann Thorac Surg. 1996; 61:755–759. doi: 10.1016/0003-4975(95)00887-X.CrossrefMedlineGoogle Scholar
  • 272. Bartus K, Han FT, Bednarek J, Myc J, Kapelak B, Sadowski J, Lelakowski J, Bartus S, Yakubov SJ, Lee RJ. Percutaneous left atrial appendage suture ligation using the LARIAT device in patients with atrial fibrillation: initial clinical experience.J Am Coll Cardiol. 2013; 62:108–118. doi: 10.1016/j.jacc.2012.06.046.CrossrefMedlineGoogle Scholar
  • 273. Kebernik J, Jose J, Abdel-Wahab M, Stöcker B, Geist V, Richardt G. Safety and eEfficacy of left atrial appendage closure with the amplatzer cardiac plug in very high stroke and bleeding risk patients with non valvular atrial fibrillation.Cardiol Ther. 2015; 4:167–177. doi: 10.1007/s40119-015-0053-z.CrossrefMedlineGoogle Scholar
  • 274. Reddy VY, Doshi SK, Sievert H, Buchbinder M, Neuzil P, Huber K, Halperin JL, Holmes D; PROTECT AF Investigators. Percutaneous left atrial appendage closure for stroke prophylaxis in patients with atrial fibrillation: 2.3- year follow-up of the PROTECT AF (Watchman Left Atrial Appendage System for Embolic Protection in Patients with Atrial Fibrillation) trial.Circulation. 2013; 127:720–729. doi: 10.1161/CIRCULATIONAHA.112.114389.LinkGoogle Scholar
  • 275. Holmes DR, Kar S, Price MJ, Whisenant B, Sievert H, Doshi SK, Huber K, Reddy VY. Prospective randomized evaluation of the Watchman left atrial appendage closure device in patients with atrial fibrillation versus long-term warfarin therapy: the PREVAIL trial.J Am Coll Cardiol. 2014; 64:1–12. doi: 10.1016/j.jacc.2014.04.029.CrossrefMedlineGoogle Scholar
  • 276. Waksman R, Pendyala LK. Overview of the Food and Drug Administration circulatory system devices panel meetings on WATCHMAN left atrial appendage closure therapy.Am J Cardiol. 2015; 115:378–384. doi: 10.1016/j.amjcard.2014.11.011.CrossrefMedlineGoogle Scholar
  • 277. Homma S, Thompson JL, Pullicino PM, et al.; WARCEF Investigators. Warfarin and aspirin in patients with heart failure and sinus rhythm.N Engl J Med. 2012; 366:1859–1869. doi: 10.1056/NEJMoa1202299.CrossrefMedlineGoogle Scholar
  • 278. Homma S, Thompson JL, Qian M, et al.; WARCEF Investigators. Quality of anticoagulation control in preventing adverse events in patients with heart failure in sinus rhythm: Warfarin versus Aspirin in Reduced Cardiac Ejection Fraction trial substudy.Circ Heart Fail. 2015; 8:504–509. doi: 10.1161/CIRCHEARTFAILURE.114.001725.LinkGoogle Scholar
  • 279. Lee M, Saver JL, Hong KS, Wu HC, Ovbiagele B. Risk-benefit profile of warfarin versus aspirin in patients with heart failure and sinus rhythm: a meta-analysis.Circ Heart Fail. 2013; 6:287–292. doi: 10.1161/CIRCHEARTFAILURE.112.971697.LinkGoogle Scholar
  • 280. Risk of stroke in the distribution of an asymptomatic carotid artery.TheEuropeanCarotidSurgeryTrialistsCollaborativeGroup. Lancet. 1995; 345:209–212.CrossrefMedlineGoogle Scholar
  • 281. Mohammed N, Anand SS. Prevention of disabling and fatal strokes by successful carotid endarterectomy in patients without recent neurological symptoms: randomized controlled trial. Mrc asymptomatic carotid surgery trial (ACST) collaborative group.Lancet2004; 363: 1491–502. Vascular Med. 2005; 10:77–78.Google Scholar
  • 282. Rothwell PM. Endarterectomy for symptomatic and asymptomatic carotid stenosis.Neurol Clin. 2008; 26:1079–97, x. doi: 10.1016/j.ncl.2008.09.013.CrossrefMedlineGoogle Scholar
  • 283. Benavente O, Moher D, Pham B. Carotid endarterectomy for asymptomatic carotid stenosis: a meta-analysis.BMJ. 1998; 317:1477–1480.CrossrefMedlineGoogle Scholar
  • 284. North American Symptomatic Carotid Endarterectomy Trial Collaborators. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis.N Engl J Med. 1991; 325:445–453.CrossrefMedlineGoogle Scholar
  • 285. Raman G, Moorthy D, Hadar N, Dahabreh IJ, O’Donnell TF, Thaler DE, Feldmann E, Lau J, Kitsios GD. Management strategies for asymptomatic carotid stenosis: a systematic review and meta-analysis.Ann Intern Med. 2013; 158:676–685. doi: 10.7326/0003-4819-158-9-201305070-00007.CrossrefMedlineGoogle Scholar
  • 286. Moore WS. Issues to be addressed and hopefully resolved in the carotid revascularization endarterectomy versus stenting trial 2.Angiology. 2016; 67:408–410. doi: 10.1177/0003319715611281.CrossrefMedlineGoogle Scholar
  • 287. Chimowitz MI, Lynn MJ, Derdeyn CP, et al.; SAMMPRIS Trial Investigators. Stenting versus aggressive medical therapy for intracranial arterial stenosis.N Engl J Med. 2011; 365:993–1003. doi: 10.1056/NEJMoa1105335.CrossrefMedlineGoogle Scholar
  • 288. Derdeyn CP, Chimowitz MI, Lynn MJ, et al.; Stenting and Aggressive Medical Management for Preventing Recurrent Stroke in Intracranial Stenosis Trial Investigators. Aggressive medical treatment with or without stenting in high-risk patients with intracranial artery stenosis (SAMMPRIS): the final results of a randomised trial.Lancet. 2014; 383:333–341. doi: 10.1016/S0140-6736(13)62038-3.CrossrefMedlineGoogle Scholar